Background: The ECSA Education System Documents

The documents that define the Engineering Council of South Africa (ECSA) system for accreditation of programmes meeting educational requirements for professional categories are shown in Figure 1 which also locates the current document.

Purpose

This document defines the standard for accredited Diploma in Engineering Technology-type programmes in terms of programme design criteria, a knowledge profile and a set of graduate attributes. This standard is referred to in the Accreditation Criteria defined in ECSA document E-03-P.
QUALIFICATION TYPE AND VARIANT

Diploma in Engineering Technology

GENERAL CHARACTERISTICS

This qualification primarily has a vocational or industry-orientation. It emphasises selected general principles together with more specific procedures and their application and/or technology transfer. The qualification provides students with a sound knowledge base in a particular field or discipline and the ability to apply their knowledge and skills to particular career or professional contexts, while equipping them to undertake more specialised and intensive learning. Programmes leading to this qualification tend to have strong vocational professional career focus and students and holders of this qualification are normally prepared to enter a specific niche in the labour market. Diploma in Technology programmes typically do not include a work-integrated learning (WIL) component.

(The Higher Education Qualifications Sub-Framework, CHE, 2013)

Preamble

The competence of a Professional Engineering Technician at the level required for independent practice, that is, on qualifying for registration, is generally developed in two stages. First, a Diploma in Engineering Technology meeting this standard provides the educational foundation and entry to programmes like the Diploma or Bachelor Degree. Second, competence must be further developed through training and experience, typically for three or more years. The educational foundation has an application-oriented theoretical basis of natural sciences and mathematics to underpin practically-oriented engineering science and engineering specialist knowledge. Conceptual knowledge is used in engineering applications and design. Completing a work-integrated learning component provide part of the required practical experience, and entry to an Advanced Diploma. Training and experience after graduation develops contextual knowledge and the ability to solve problems in real-life situations using established methods.

As indicated in the qualification title definition, the qualification may be awarded as a result of programmes in several disciplines and cross disciplinary fields, including newly emerged fields. This standard specifies the generic knowledge profile and outcomes common to all programmes. Standards are not defined at the second qualifier level.

Note

Words and phrases having specific meaning are defined in Section 11 of this document or in Engineering Council of South Africa (ECSA) Document E-01-P. The method recommended for calculating credits is detailed in ECSA Document E-01-P available at www.ecsa.co.za.
1. HEQSF specification

<table>
<thead>
<tr>
<th>HEQSF Qualification Type</th>
<th>Diploma in Engineering Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant</td>
<td>Vocationally - oriented</td>
</tr>
<tr>
<td>NQF Exit Level</td>
<td>Minimum Total Credits</td>
</tr>
<tr>
<td>6</td>
<td>280</td>
</tr>
</tbody>
</table>

2. Qualification title

First Qualifier: Diploma in Engineering Technology

Second Qualifier: The second qualifier must indicate an engineering discipline or accepted practice area and normally contain the word *engineering*. The qualifier must be consistent with the engineering science content of the programme. Disciplinary qualifiers are currently Aeronautical, Agricultural, Chemical, Civil, Electrical, Industrial, Metallurgical, Mechanical, and Mining.

3. Purpose statement

This qualification is primarily vocational, or industry oriented, characterised by the knowledge emphasis, general principles and application or technology transfer. The qualification provides students with a sound knowledge base in a particular field or discipline and the ability to apply their knowledge and skills to particular career or professional contexts, while equipping them to undertake more specialised and intensive learning. Programmes leading to this qualification tend to have a strong vocational, professional or career focus and holders of this qualification are usually prepared to enter a specific niche in the labour market.

The specific purpose of educational programmes designed to meet this qualification are to build the necessary knowledge, understanding, abilities and skills required for further learning towards becoming a competent practicing Professional Engineering Technician. This qualification provides:

1. Preparation for careers in engineering and areas that potentially benefit from engineering skills, for achieving technical proficiency and competency to make a contribution to the economy and national development;
2. The educational base required for registration as a Candidate and/or a Professional Engineering Technician with ECSA (Refer to qualification rules).
3. Entry to programmes e.g. Diploma or Bachelor Degree programmes.
4. Entry to an Advanced Diploma upon successful completion of a work-integrated learning component, or a combination of work-integrated learning and coursework, equivalent to at least 30 credits but not to exceed 120 credits.

Engineering students completing this qualification will demonstrate competence in all the Graduate Attributes contained in this standard.

Note: This standard is designed to meet the educational requirement towards registration as a Candidate or Professional Engineering Technician with the Engineering Council of South Africa.

4. Normal duration of study

Programmes have normal durations of two years, with not less than 280 Credits.

5. Standard for the award of the qualification

The purpose and level of the qualification will have been achieved when the student has demonstrated:

- the knowledge defined in section 6, and
- the skills and applied competence defined in section 7.

6. Knowledge

Knowledge demonstrated by the graduate has the following characteristics:

6.1: At least the number of credits in the knowledge areas shown:

<table>
<thead>
<tr>
<th>Knowledge area</th>
<th>Minimum Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Sciences</td>
<td>28</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>21</td>
</tr>
<tr>
<td>Engineering Sciences</td>
<td>126</td>
</tr>
<tr>
<td>Design and Synthesis</td>
<td>28</td>
</tr>
<tr>
<td>Computing and Information Technology</td>
<td>21</td>
</tr>
<tr>
<td>Complementary studies</td>
<td>14</td>
</tr>
</tbody>
</table>

Note: These credits total 236. Credits in selected knowledge areas must be increased to satisfy the 280 minimum total credits.

6.2: The level of knowledge of mathematics, natural sciences and engineering sciences is characterized by:

- A coherent range of fundamental principles in mathematics and natural science underlying a discipline or recognised practice area.
- A coherent range of fundamental principles in engineering science and technology underlying an engineering discipline or recognised practice area.
- A codified practical knowledge in recognised practice area.
- The use of mathematics, natural sciences and engineering sciences, supported by established mathematical formulas, codified engineering analysis, methods and procedures to solve well-defined engineering problems.

6.3: A coherent progression of learning in mathematics, natural sciences and engineering fundamentals that provides a progression to the exit level.
6.4: Specialist knowledge of engineering methods at the exit-level in a sub-discipline or specialist field. Specialist study may take the form of compulsory or elective credits.

6.5: In the Complementary Studies area, it covers those disciplines outside of engineering sciences, basic sciences and mathematics which are relevant to the practice of engineering in two ways: (a) principles, results and methods are applied in the practice of engineering, including engineering economics, the impact of technology on society and effective communication; and (b) study broadens the student’s perspective in the humanities or social sciences to support an understanding of the world. Underpinning Complementary Studies knowledge of type (b) must be sufficient and appropriate to support the student in satisfying Graduate Attributes 6, 7 and 10 in the graduates specialised practice area.

6.6: This standard does not specify detailed curriculum content. The engineering fundamentals and specialist engineering science content must be consistent with the second qualifier.

7. Skills and Applied Competence

The graduate is able to demonstrate competence in the graduate attributes 1 to 10. The Graduate Attributes are stated generically and may be assessed in various engineering disciplinary or cross-disciplinary contexts in a provider-based or simulated practice environment. Words and phrases having specific meaning are defined in this document or in the ECSA document E-01-P.

Note:

General Range Statement: The competencies defined in the ten graduate attributes may be demonstrated in a provider-based and/or simulated workplace context.

Graduate Attribute 1: Problem solving
Apply engineering principles to systematically diagnose and solve well-defined engineering problems.

Level Descriptor: Well-defined engineering problems:
 a. Can be solved mainly by practical engineering knowledge, underpinned by related theory;
 and have one or more of the characteristics:
 b. are largely defined but may require clarification;
 c. are discrete, focussed tasks within engineering systems;
 d. are routine, frequently encountered, may be unfamiliar but in familiar context;
 and have one or more of the characteristics:
 e. can be solved in standardized or prescribed ways;
 f. are encompassed by standards, codes and documented procedures; requires authorization to work outside limits;
 g. information is concrete and largely complete, but requires checking and possible supplementation;
 h. involve several issues but few of these imposing conflicting constraints and a limited range of interested and affected parties.
Graduate Attribute 2: Application of scientific and engineering knowledge
Apply knowledge of mathematics, natural science and engineering sciences to applied engineering procedures, processes, systems and methodologies to solve \textit{well-defined} engineering problems.

\textbf{Range Statement:} See section 6.2.

Graduate Attribute 3: Engineering Design
Perform procedural design of components, systems, works, products or processes to meet requirements, normally within applicable standards, codes of practice and legislation.

\textbf{Range Statement:} Design problems used in assessment must conform to the definition of \textit{well-defined} engineering problems:
1. A design project should be used to provide evidence of compliance with this outcome;
2. The problem would be typical of that which the graduate would participate in a typical employment situation shortly after graduation;
3. The selection of components, systems, engineering works, products or processes to be designed is dependent on the sub-discipline;
4. A design project should include one or more of the following impacts: social, economic, legal, health, safety, and environmental;

Graduate Attribute 4: Investigations, experiments and data analysis
Conduct investigations of \textit{well-defined} problems through locating and searching relevant codes and catalogues, conducting standard tests, experiments and measurements.

\textbf{Range Statement:} The balance of investigation should be appropriate to the discipline. An investigation should be typical of those in which the graduate would participate in an employment situation shortly after graduation.

\textbf{Note:} An investigation differs from a design in that the objective is to produce knowledge and understanding of a phenomenon.

Graduate Attribute 5: Engineering methods, skills and tools, including Information Technology
Use appropriate techniques, resources, and modern engineering tools including information technology for the solution of \textit{well-defined} engineering problems, with an awareness of the limitations, restrictions, premises, assumptions and constraints.

\textbf{Range Statement:} A range of methods, skills and tools appropriate to the discipline of the program including:
1. Sub-discipline-specific tools processes or procedures;
2. Computer packages for computation, simulation, and information handling;
3. Computers and networks and information infrastructures for accessing, processing, managing, and storing information to enhance personal productivity and teamwork;
4. Basic techniques from economics, management, and health, safety and environmental protection.
Graduate Attribute 6: Professional and technical communication
Communicate effectively, both orally and in writing within an engineering context.

Range Statement: Material to be communicated is in a simulated professional context:
1. Audiences are engineering peers, academic personnel and related engineering persons using appropriate formats;
2. Written reports range from short (minimum 300 words) to long (a minimum of 2,000 words excluding tables, diagrams and appendices), covering material at the exit level;
3. Methods of providing information include the conventional methods of the discipline, for example engineering drawings, physical models, bills of quantities as well as subject-specific methods.

Graduate Attribute 7: Sustainability and Impact of Engineering Activity
Demonstrate knowledge and understanding of the impact of engineering activity on the society, economy, industrial and physical environment, and address issues by defined procedures.

Range Statement: The combination of social, workplace (industrial) and physical environmental factors is appropriate to the sub-discipline of the qualification. Evidence may include case studies typical of the technical practice situations in which the graduate is likely to participate. Issues and impacts to be addressed:
1. Are encompassed by standards and documented codes of practice
2. Involve a limited range of stakeholders with differing needs.
3. Have consequences that are locally important and are not far reaching.
4. Are well-defined and discrete and part of an engineering system.

Graduate Attribute 8: Individual, Team and Multidisciplinary Working
Demonstrate knowledge and understanding of engineering management principles and apply these to one’s own work, as a member and leader in a technical team and to manage projects.

Range Statement:
1. The ability to manage a project should be demonstrated in the form of the project indicated in Graduate Attribute 3.
2. Tasks are discipline specific and within the technical competence of the graduate.
3. Projects could include: laboratories, business plans, design, etc.;
4. Management principles include:
 4.1 Planning: set objectives, select strategies, implement strategies and review achievement;
 4.2 Organising: set operational model, identify and assign tasks, identify inputs, delegate responsibility and authority;
 4.3 Leading: give directions, set example, communicate, motivate;
 4.4 Controlling: monitor performance, check against standards, identify variations and take remedial action.

Graduate Attribute 9: Independent Learning Ability
Engage in independent and life-long learning through well-developed learning skills.

Range Statement: The learning context is well-structured with some unfamiliar elements.
Graduate Attribute 10: Engineering Professionalism
Understand and commit to professional ethics, responsibilities and norms of engineering technical practice.

Range Statement: Evidence includes case studies, memorandum of agreement, code of conduct, membership of professional societies etc typical of engineering practice situations in which the graduate is likely to participate.

8. Contexts and conditions for assessment

Graduate Attributes defined in 7 above are stated generically and may be assessed in various engineering disciplinary or cross-disciplinary contexts in a provider-based or an actual or simulated practice environment.

Providers of programmes shall in the quality assurance process demonstrate that an effective integrated assessment strategy is used. Clearly identified components of assessment must address summative assessment of graduate attributes. Evidence should be derived from major work or multiple instances of limited scale work.

9. Award of the qualification

The qualification may be awarded when the qualification standard has been met or exceeded.

10. Progression

Candidates who complete the 280-credit Diploma may enter an Advanced Diploma in Engineering Technology upon successful completion of a work integrated learning component or a combination of work-integrated learning and coursework equivalent to a minimum of 120 credits that is approved and accredited by an education provider and/or a professional body and the relevant Quality Council. A qualification may not be awarded for early exit from a Diploma Programme.

Completion of a 280-credit Diploma meets the minimum entry requirement for admission to a Diploma or Bachelor's degree. Accumulated credits may also be presented for admission into a cognate 360-credit Diploma in Engineering or a Bachelor's Degree programme.

11. Guidelines

11.1 Pathway
This qualification lies on a HEQSF Vocational Pathway.

11.2 Definition of terms
Complementary Studies: cover those disciplines outside of engineering sciences, natural sciences and mathematics which are relevant to the practice of engineering including but not limited to engineering economics, management, the impact of technology on society, effective communication, and the humanities, social sciences or other areas that support an understanding of the world in which engineering is practised.
Computing and Information Technologies: encompasses the use of computers, networking and software to support engineering activity and as an engineering activity in itself as appropriate to the discipline.

Engineering fundamentals: engineering sciences that embody a systematic formulation of engineering concepts and principles based on mathematical and natural sciences to support applications.

Engineering Management: the generic management functions of planning, organising, leading and controlling, applied together with engineering knowledge in contexts including the management of projects, construction, operations, maintenance, quality, risk, change and business.

Engineering Design and Synthesis: is the systematic process of conceiving and developing materials, components, systems and processes to serve useful purposes. Design may be procedural, creative or open-ended and requires application of engineering sciences, working under constraints, and taking into account economic, health and safety, social and environmental factors, codes of practice and applicable laws.

Engineering Discipline (=Branch of engineering): a generally-recognised, major subdivision of engineering such as the traditional disciplines of Chemical, Civil, or Electrical Engineering, or a cross-disciplinary field of comparable breadth including combinations of engineering fields, for example Mechatronics, and the application of engineering in other fields, for example Bio-Medical Engineering.

Engineering Sub-discipline (=Engineering Speciality): a generally-recognised practice area or major subdivision within an engineering discipline, for example Structural and Geotechnical Engineering within Civil Engineering.

Engineering Sciences: have roots in the mathematical and physical sciences, and where applicable, in other natural sciences but extend knowledge and develop models and methods in order to lead to engineering applications and solve engineering problems.

Engineering Speciality: the extension of engineering fundamentals to create theoretical frameworks and bodies of knowledge for engineering practice areas.

Mathematical Sciences: an umbrella term embracing the techniques of mathematics, numerical analysis, statistics and aspects of computer science cast in an appropriate mathematical formalism.

Natural Sciences: physics (including mechanics), chemistry, earth sciences and the biological sciences which focus on understanding the physical world, as applicable in each engineering disciplinary context.
ANNEXURE A

NQF LEVEL DESCRIPTORS

The qualification is awarded at **level 6** on the National Qualifications Framework (NQF) and therefore meets the following level descriptors:

- **a.** Scope of knowledge, in respect of which a learner is able to demonstrate: detailed knowledge of the main areas of one or more fields, disciplines or practices, including an understanding of and the ability to apply the key terms, concepts, facts, principles, rules and theories of that field, discipline or practice to unfamiliar but relevant contexts; and knowledge of an area or areas of specialisation and how that knowledge relates to other fields, disciplines or practices.
- **b.** Knowledge literacy, in respect of which a learner is able to demonstrate an understanding of different forms of knowledge, schools of thought and forms of explanation within an area of study, operation or practice, and awareness of knowledge production processes.
- **c.** Method and procedure, in respect of which a learner is able to demonstrate the ability to evaluate, select and apply appropriate methods, procedures or techniques in investigation or application processes within a defined context.
- **d.** Problem solving, in respect of which a learner is able to demonstrate the ability to identify, analyse and solve problems in unfamiliar contexts, gathering evidence and applying solutions based on evidence and procedures appropriate to the field, discipline or practice.
- **e.** Ethics and professional practice, in respect of which a learner is able to demonstrate an understanding of the ethical implications of decisions and actions within an organisational or professional context, based on an awareness of the complexity of ethical dilemmas.
- **f.** Accessing, processing and managing information, in respect of which a learner is able to demonstrate the ability to evaluate different sources of information, to select information appropriate to the task, and to apply well-developed processes of analysis, synthesis and evaluation to that information.
- **g.** Producing and communicating information, in respect of which a learner is able to demonstrate the ability to present and communicate complex information reliably and coherently using appropriate academic and professional or occupational conventions, formats and technologies for a given context.
- **h.** Context and systems, in respect of which a learner is able to demonstrate the ability to make decisions and act appropriately in familiar and new contexts, demonstrating an understanding of the relationships between systems, and of how actions, ideas or developments in one system impact on other systems.
- **i.** Management of learning, in respect of which a learner is able to demonstrate the ability to evaluate performance against given criteria, and accurately identify and address his or her task-specific learning needs in a given context, and to provide support to the learning needs of others where appropriate.
- **j.** Accountability, in respect of which a learner is able to demonstrate the ability to work effectively in a team or group, and to take responsibility for his or her decisions and actions and the decisions and actions of others within well-defined contexts, including the responsibility for the use of resources where appropriate.
ANNEXURE B: Exemplified Associated Competency Indicators

The competency indicators presented here are typifying, not prescriptive.

Graduate Attribute 1:
1.1 The problem is analysed and defined and criteria are identified for an acceptable solution.
1.2 Relevant information and engineering knowledge and skills are identified and used for solving the problem.
1.3 Various approaches are considered and formulated that would lead to workable solutions.
1.4 Solutions are modelled and analysed.
1.5 Solutions are evaluated and the best solution is selected.
1.6 The solution is formulated and presented in an appropriate form.

Graduate Attribute 2:
2.1 An appropriate mix of knowledge of mathematics, statistics, natural science and engineering science knowledge at a fundamental level is brought to bear on the solution of well-defined engineering problems.
2.2 Applicable principles and laws are used.
2.3 Engineering materials, components, systems or processes are analysed.
2.4 Concepts and ideas are presented in a logical and methodical manner.
2.5 Reasoning about engineering materials, components, systems or processes is performed.
2.6 Procedures for dealing with uncertain/undefined/ill-defined variables are outlined and justified.
2.7 Work is performed within the boundaries of the practice area

Graduate Attribute 3:
3.1 The design problem is formulated to satisfy user needs, applicable standards, codes of practice and legislation.
3.2 The design process is planned and managed to focus on important issues and recognises and deals with constraints.
3.3 Knowledge, information and resources are acquired and evaluated in order to apply appropriate principles and design tools to provide a workable solution.
3.4 Design tasks are performed that include analysis and optimisation of the product, or system or process, subject to relevant premises, assumptions and constraints.
3.5 Alternatives are evaluated for implementation and a preferred solution is selected based on techno-economic analysis and judgement.
3.6 The design logic and relevant information is communicated in a technical report.
3.7 Procedures are applied to evaluate the selected design and assessed in terms of the impact and benefits.

Graduate Attribute 4:
4.1 The scope of the investigation is defined.
4.2 Investigations are planned and conducted within an appropriate discipline.
4.3 Available literature is searched and material is evaluated for suitability to the investigation.
4.4 Relevant equipment or software is selected and appropriately used for the investigation.
4.5 Data obtained is analysed and interpreted.
4.6 Conclusions are drawn from an analysis of all available evidence.
4.7 The purpose, process and outcomes of the investigation are recorded in a technical report.
Graduate Attribute 5:
5.1 The method, skill or tool is assessed for applicability and limitations against the required result.
5.2 The method, skill or tool is applied correctly.
5.3 Results produced by the method, skill or tool are tested and assessed.
5.4 Relevant computer applications are selected and used.

Graduate Attribute 6:
6.1 The structure, style and language of written and oral communication is appropriate for the purpose of the communication and the target audience.
6.2 Graphics used are appropriate and effective in enhancing the meaning of the text.
6.3 Visual materials used enhance oral communications.
6.4 Information is provided in a format that can be used by others involved in the engineering activity.
6.5 Oral communication is delivered with the intended meaning being apparent.

Graduate Attribute 7:
7.1 The impact of technology is demonstrated in terms of the benefits and limitations to society.
7.2 The engineering activity is analysed in terms of the impact on occupational and public health and safety.
7.3 The engineering activity is analysed in terms of the impact on the physical environment.
7.4 The methods to minimise/mitigate impacts outlined in 7.2 and 7.3 are considered.

Graduate Attribute 8:
8.1 The principles of planning, organising, leading and controlling are explained.
8.2 Individual work is carried out effectively, strategically and on time.
8.3 Individual contributions made to team activities support the output of the team as a whole.
8.4 Functioning as a team leader is demonstrated.
8.5 A project is organised and managed.
8.6 Effective communication carried out in the context of individual and team work.

Graduate Attribute 9:
9.1 Learning tasks are identified, planned and managed.
9.2 The requirement for independent learning is identified/recognised and demonstrated.
9.3 Relevant information is sourced, organised and evaluated.
9.4 Knowledge acquired outside of formal instruction is comprehended and applied.
9.5 Awareness is displayed of the need to maintain continued competence through keeping abreast of up-to-date tools and techniques available in the workplace.

Graduate Attribute 10:
10.1 The nature and complexity of ethical dilemmas is described in terms of required practices, legislation and limitations of authority.
10.2 The ethical implications of engineering decisions are described in terms of the impact on environment, the business, costs and trustworthiness.
10.3 Judgements in decision making during problem solving and design are ethical and within acceptable boundaries of current competence.
10.4 Responsibility is accepted for consequences stemming from own actions or inaction.
10.5 Decision making is limited to area of current competence.
In terms of the National Qualifications Framework (NQF) Act, 67 of 2008, the Council on Higher Education (CHE) is the Quality Council (QC) for Higher Education. The CHE is responsible for quality assurance of higher education qualifications.

Part of the implementation of the Higher Education Qualifications Sub-Framework (HEQSF) is the development of qualification standards. Standards development is aligned with the nested approach incorporated in the HEQSF. In this approach, the outer layer providing the context for qualification standards are the NQF level descriptors developed by the South African Qualifications Authority (SAQA) in agreement with the relevant QC. One of the functions of the QC (in the case of higher education, the CHE) is to ensure that the NQF level descriptors ‘remain current and appropriate’. The development of qualification standards for higher education therefore needs to take the NQF level descriptors, as the outer layer in the nested approach, into account. An ancillary function is to ensure that they ‘remain current and appropriate’ in respect of qualifications awarded by higher education institutions.

A secondary layer for the context in which qualification standards are developed is the HEQSF. This framework specifies the types of qualification that may be awarded and, in some cases, the allowable variants of the qualification type. An example of variants is the provision for two variants of the Master’s degree (including the ‘professional’ variant).

Another example is the distinction, in the Bachelor’s degree type, between the ‘general’ and ‘professionally-oriented’ variants. The HEQSF also specifies the purpose and characteristics of each qualification type. However, as indicated in the Framework for Qualification Standards in Higher Education (CHE, 2013), neither NQF level descriptors nor the HEQSF is intended to address, or indeed capable of addressing, fully the relationship between generic qualification-type purpose and the specific characteristics of that qualification type in a particular field of study. One of the tasks of standards development is to reconcile the broad, generic description of a qualification type according to the HEQSF and the particular characteristics of qualifications awarded in diverse fields of study and disciplines, as defined by various descriptors and qualifiers.

Development of qualification standards is guided by the principles, protocols and methodology outlined in the Framework, approved by the Council in March 2013. The focus of a standards statement is the relationship between the purpose of the qualification, the attributes of a graduate that manifest the purpose, and the contexts and conditions for assessment of those attributes. A standard establishes a threshold. However, on the grounds that a standard also plays a developmental role, the statement may include, as appropriate, elaboration of terms specific to the statement, guidelines for achievement of the graduate attributes, and recommendations for above-threshold practice.
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Revision Authorized by</th>
<th>Nature of revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev 1</td>
<td>10 May 2012</td>
<td>Technology SGG Working Group</td>
<td>Reconfiguration of document approved by Council to align with E-02-PE</td>
</tr>
<tr>
<td>Rev 2</td>
<td>14 March 2013</td>
<td>ECSA Council</td>
<td>Editorial improvement</td>
</tr>
<tr>
<td>Rev 3 Draft A</td>
<td>27 November 2015</td>
<td>SGG draft for submission to ESGB</td>
<td>Revision 2 converted to new CHE format</td>
</tr>
<tr>
<td>Rev 4 Draft A</td>
<td>23 January 2016</td>
<td>Revised SGG draft for submission to the ESGB</td>
<td>Revision 3 revised (in red underlined) and CHE objection against the use of their logo and ECSA using the wrong procedure to register the standard addressed</td>
</tr>
<tr>
<td>Rev 4</td>
<td>24 March 2016</td>
<td>Approved by Council</td>
<td>No amendments</td>
</tr>
</tbody>
</table>

ECSA
CONTROLLED COPY

Executive: Policy Development and Standards Generation

John Cato
2016-08-17

Date