ENSURING THE EXPERTISE TO GROW SOUTH AFRICA

Sub Discipline-Specific Training Guide for Lifting Machinery Inspectors

R-05-LMI-SC

Revision No.: 2: 10 October 2019
TABLE OF CONTENTS

DEFINITIONS 3

BACKGROUND 5

1. **PURPOSE OF THIS DOCUMENT** .. 5

2. **AUDIENCE** 6

3. **PERSONS NOT REGISTERED AS A CANDIDATE OR NOT BEING TRAINED UNDER COMMITMENT AND UNDERTAKING (C&U)** ... 7

4. **ORGANISATIONAL FRAMEWORK FOR OCCUPATION** 7

5. **NATURE AND ORGANISATION OF THE INDUSTRY** 9

5.1 Investigation .. 10

5.2 Design and Manufacturing .. 12

5.3 Operations and Maintenance ... 12

5.4 Research and Development ... 13

5.5 Risk and Impact Mitigation .. 13

6. **DEVELOPING COMPETENCY: ELABORATING ON SECTIONS IN THE GUIDE TO THE COMPETENCY STANDARD (R-08-SC)** .. 14

6.1 Contextual Knowledge .. 14

6.2 Functions Performed .. 14

6.3 Statutory and Regulatory Requirements ... 16

6.4 Desirable Formal Learning .. 17

7. **PROGRAMME STRUCTURE AND SEQUENCING** 17

7.1 Best Practice .. 17

7.2 Realities .. 18

7.3 Generalists, specialists, researchers and academics 18

7.4 Multi-disciplinary exposure .. 18

7.5 Orientation Requirements .. 19

CONTROLLED DISCLOSURE

When downloaded for the ECSA Document Management System, this document is uncontrolled and the responsibility rests with the user to ensure that it is in line with the authorised version on the database. If the ‘original’ stamp in red does not appear on each page, this document is uncontrolled.
7.6 Moving into or Changing Candidacy Programmes.. 19
7.7 Compulsory Sub Discipline-specific Requirements to be met during the Candidacy..... 19

REVISION HISTORY.. 21
APPENDIX A.. 22
APPENDIX B.. 24
APPENDIX C.. 29
DEFINITIONS

Alternative Route: Refers to an applicant who aspires to become registered in a Candidate or Professional Category but does not have the accredited or recognised qualification(s) and who proposes to meet the educational requirement through further study and assessment.

Benchmark Route: The normal process required to attain registration that consists of the completion of an accredited, recognised or evaluated equivalent qualification and a well-structured and effectively executed programme of training and experience for the category of registration.

Competency area means the performance area where all the outcomes can be demonstrated at the level prescribed in a specific technology in an integrated manner.

Engineering science means a body of knowledge, based on the natural sciences and using mathematical formulation where necessary, that extends knowledge and develops models and methods to support its application, solve problems and provide the knowledge base for engineering specialisations.

Engineering problem means a problematic situation that is amenable to analysis and solution using engineering sciences and methods.

Ill-posed problem means problems whose requirements are not fully defined or may be defined erroneously by the requesting party.

Integrated performance means that an overall satisfactory outcome of an activity requires several outcomes to be satisfactorily attained, for example a design will require analysis, synthesis, analysis of impacts, checking of regulatory conformance and judgement in decisions.

Level descriptor means a measure of performance demands at which outcomes must be demonstrated.

Management of engineering works or activities means the coordinated activities required to:

(i) direct and control everything that is constructed or results from construction or manufacturing operations;
operate engineering works safely and in the manner intended;

(iii) return engineering works, plant and equipment to an acceptable condition by the renewal, replacement or mending of worn, damaged or decayed parts;

(iv) direct and control engineering processes, systems, commissioning, operation and decommissioning of equipment;

(v) maintaining engineering works or equipment in a state in which it can perform its required function.

Over-determined problem means a problem whose requirements are defined in excessive detail, making the required solution impossible to attain in all of its aspects.

Outcome at the specified category level means a statement of the performance that a person must demonstrate in order to be judged competent.

Practice area means a generally recognised or distinctive area of knowledge and expertise developed by an engineering practitioner by virtue of the path of education, training and experience followed.

Range statement means the required extent of or limitations on expected performance stated in terms of situations and circumstances in which outcomes are to be demonstrated in a particular competency area.

Specified Category means a category of registration for persons who must be registered through the Engineering Profession Act or a combination of the Engineering Profession Act and external legislation as having specific engineering competencies normally at NQF Level 5 related to an identified need to protect the public safety, health and interest or the environment, in relation to an engineering activity.

Sustainable development means development that meets the needs of the present without compromising the ability of future generations to meet their own needs.
BACKGROUND

The illustration below defines the documents that comprise the Engineering Council of South Africa (ECSA) system for registration in professional categories. The illustration also locates the current document.

Figure 1: Documents defining the ECSA Registration System

1. PURPOSE OF THIS DOCUMENT

All persons applying for registration in the Specified Category of Lifting Machinery Inspectors are expected to demonstrate the competencies specified in policy document R-02-SC at the prescribed level, irrespective of the type of lifting equipment applicable, through work performed by the applicant at the prescribed level of responsibility.
This document supplements the generic Training and Mentoring Guide R-04-SC and the Guide to the Competency Standards for Registered Specified Category Practitioners, document R-08-SC.

In document R-04-SC, attention is drawn to the following sections:

- Duration of training and period working at level required for registration
- Principles of planning training and experience
- Progression of training programme
- Documenting training and experience
- Demonstrating responsibility

The second document R-08-SC provides both a high-level and outcome-by-outcome understanding of the competency standards as an essential basis for this Sub Discipline-Specific Training Guide (DSTG).

This DSTG, as well as documents R-04-SC and R-08-SC, are subordinate to the Policy on Registration (document R-01-SC), the Competency Standard (document R-02-SC) and the application process definition (document R-03-SC).

2. AUDIENCE

This DSTG is directed to candidates and their registered supervisors / mentors in the discipline of Specified Category for Lifting Machinery Inspection (RLMI). The guide is intended to support a programme of training and experience incorporating good practice elements.

This guide applies to persons who have:

- completed the education requirements by obtaining at least an accredited Higher Certificate (Engineering) type qualification at NQF Level 5, by obtaining substantially equivalent qualification, and through evaluation / assessment;
- registered as Candidate Specified Category CLMI; and/or
- embarked on a process of acceptable training under a registered Commitment and Undertaking (C&U) with a registered LMI Mentor guiding the professional development process at each stage.
3. PERSONS NOT REGISTERED AS A CANDIDATE OR NOT BEING TRAINED UNDER COMMITMENT AND UNDERTAKING (C&U)

Irrespective of the development path followed, all applicants for registration must present the same evidence of competence and be assessed against the same standards. It shall be noted that, application for registration as a Specified Category Practitioner is permitted without being registered as a Candidate Specified Category LMI and without training under a C&U. Mentorship and adequate supervision are however, key factors in effective development to the level required for registration. A C&U indicates that the company is committed to mentorship and supervision.

If the employer of the trainee does not offer C&U, the trainee should establish the level of mentorship and supervision the employer is able to provide. In the absence of an internal mentor, the services of an external mentor on specified category for LMI should be secured. Alternatively, the recognised Voluntary Association (VA) for the sub discipline may be consulted for assistance in locating an external mentor. A mentor must keep abreast of all stages of the development process.

This DSTG is written for the recent graduate or applicant who has achieved relevant educational level requirements and who is training and gaining experience toward registration as stipulated by council in schedule 3 of the policy R-01-SC. Mature applicants for registration may apply the guide retrospectively to identify possible gaps in their development.

Any applicant who has been through a mentorship programme is advised to request an experienced mentor (internal or external) to act as an application adviser while he/she prepares his/her application for registration. This DSTG may also be applied in the case of a person moving into a candidacy programme at a later stage that is at a level below that required for registration (see Section 7.6 of this document).

4. ORGANISATIONAL FRAMEWORK FOR OCCUPATION

Lifting Machinery Inspectors (Organising Framework for Occupations (OFO))

Registered Lifting Machinery Inspectors (RLMI) conduct inspections and load testing of lifting machinery as defined in the Driven Machinery Regulations of the Occupational Health and
Safety Act (Act no 85 of 1993). This Act defines a Lifting Machine as “a power-driven machine designed and constructed for raising and lowering load or moving it in suspension, and includes a block and tackle, hoist, crane, lift truck or jib crane, but does not include an elevator, escalator, goods hoist or builders hoist (refer to Appendix B for examples).

Lifting equipment consists of lifting machines and associated lifting tackle (e.g. slings, chains, hooks, etc.), which are designed by engineering practitioners using mechanical advantage to handle loads during engineering projects. This equipment also requires rigorous maintenance and inspection throughout its lifetime. A great variety of lifting equipment, usually designed and certified for first time operation by engineering professionals, is available to industry for use in lifting or moving almost any capacity of load in many applications at any location.

It follows that the design, manufacture, use, maintenance, inspection and testing of lifting equipment must be in accordance with accepted prescribed regulations and standards, and audits to verify this at fixed intervals must be undertaken. The required well-administered record of work performed, inspections undertaken must be kept, and inspections carried out timeously to avoid incidents, which endanger the workforce and the public.

The Department of Labour (DoL) enforces the legislation stipulating that all Lifting Machinery Entities (LMEs) performing inspection and load testing on lifting machines shall apply for registration with the DoL. These registered LMEs are expected to ensure that their LMIs are registered with the Engineering Council of South Africa, and that they have at least one ECSA registered LMI on their staff. The LMEs are furthermore expected to ensure that:

- Competency and relevant experience of their technical staff in the applicable lifting equipment types are developed continuously, keeping records of training;
- A copy of the Occupational Health and Safety Act and its Regulations are available at all times, and evidence of the training given to technical staff in this regard is kept;
- Updated copies of all relevant Codes and Standards are available to technical staff;
- Full documentation is available including records of inspection and testing and projects carried out, as required for audit purposes;
- Test records issued be kept available for a minimum period of ten years;
• Complete sets of test and inspection equipment are kept for each specific project; and,
• Calibration certificates for the equipment to be available.

ECSA Registered LMI will be allocated a registration number after assessment with a portfolio of evidence on file and a letter detailing the specific lifting equipment types that their registration permits them to inspect and test. An inspector from the Department of Labour paying a visit to a site has the right to see whether the lifting machines have been commissioned and regularly tested as well as registration number, name, contact details of the RLMI responsible for the test undertaken.

5. NATURE AND ORGANISATION OF THE INDUSTRY

Lifting Machinery Inspectors may be employed in both the private and public sector. Typically, in the private sector they would be involved in contracting, or in supplier or manufacturing organisations. Engineering contractors are responsible for project implementation and activities including planning, construction, labour and resource management. Those working in supply or manufacturing companies could be involved in research and development, and would be involved in production, supply and quality control. The public sector is responsible for service delivery and is usually the client; though in some departments construction is also performed. The LMI are required at all levels of the public sector, including at national, provincial and local government level, state owned enterprises (SOEs), and public utilities. The LMI in the public sector largely handle overseeing implementation, operations and maintenance of infrastructure. An extension of the public sector would include tertiary institutions and research organisations. The following steps are to assist the candidate LMI during registration preparation:

i. Specific Equipment Types Applicable to Lifting Equipment

Depending on the nature of business of each employer, Candidate LMI will select one or more of the equipment types for the purpose of registration as a _Specified Category LMI_. The present equipment types recognised by ECSA are listed and described in _Appendix B_, with the applicable SANS or other standard listed, if available.
ii. Ability to Provide Complete Training

Depending on where the candidate is employed, there may be situations where the opportunities in-house are not sufficiently diverse to develop all the competencies required which should include training or OEM exposure to manufacturing, creation and commissioning as well as routine maintenance required in the lifting machinery industry, in selected or all the groups noted in document R-02-SC and in Appendix B for example the opportunity for developing problem solving competence (including design or developing solutions) and for managing engineering activities (including implementing or constructing solutions) may not both be available to the candidate. In such cases, employers are encouraged to appoint an external mentor.

It has been fairly common practice that where an organisation is not able to provide training in certain areas that secondments are arranged with other organisations, so that the candidate is able to develop all the competencies required for registration. These secondments are usually of a reciprocal nature so both employers and their respective employees get the mutual benefit from the other party. Secondments between consultants and contractors, as well as between the public and private sector should also be possible.

5.1 Investigation

Problem solving is the core of engineering. It is a logical thinking process that requires Lifting Machinery Inspectors to apply their minds diligently in bringing solutions to technically specifically-defined problems. This process involves the analysis of lifting machinery systems or assembly of mechanical components, and integration of various elements in mechanical engineering as applied to lifting equipment through the application of basic and engineering sciences.

Applicants are required to demonstrate the insight and ability to use and interface various aspects through verifiable performance in providing engineered solutions to practical specifically-defined problems experienced in their operating work environment. In addition, applicants must develop the skills required to demonstrate the use of applicable engineering knowledge in optimizing the efficiency of operations.
Candidate LMI must be able to demonstrate that they have been actively involved in a mechanical workshop environment participating in the execution of practical work such that they have learnt sufficient details on basic mechanical procedures to be able to exercise judgment in the workplace thereafter.

What is a sufficiently specifically-defined engineering problem (Appendix B)?

We can summarise the definition of *specifically-defined engineering problems* as follows: "Composed of *inter-related conditions*, requiring *underpinning methods, procedures and techniques judgment* to create a solution within a set of *specifically-defined conditions"*

The design or development is a logical thinking process that requires LMI to apply their minds carefully in bringing solutions to specifically-defined problems. This process involves the analysis of systems or assembly of mechanical and electrical components, and integration of various elements in engineering through the application of basic and engineering sciences. Simple, straightforward calculation exercises and graphical representations from computer-generated data are considered as sufficiently specifically-defined engineering design or development.

As part of demonstrating the application of theoretical knowledge, applicants must incorporate calculations with clearly defined inputs to the formulae used and detailed interpretation of the results obtained. They have to demonstrate how the calculated results have been used to provide the solution to the problem at hand, and the economic benefit to the project or the operating work environment.

Candidate LMI must obtain experience in solving a variety of problems in their work environment, and the solution to these problems should also involve the use of fundamental engineering knowledge obtained at a University of Technology or from an accredited academic engineering programme. The problems that require scientific and engineering approach in solving them may be encountered in work required to be done on lifting equipment. From their early training years, candidates must actively seek opportunities to
obtain experience in the area of synthesizing solutions to real life engineering problems encountered at the workplace on lifting machinery equipment.

A suitable period of time and degree of practical participation should be sought in the workshop environment learning the basic practices that are the essence of the mechanical discipline so that the Candidate LMI’s are capable of judging the efficacies of such practices in the general workplace thereafter.

5.2 Design and Manufacturing

Examples of acceptable design or development include, but are not limited to the modifications after obtaining approval to:

- Specifically-defined fluid systems on lifting machinery;
- Specifically-defined minor parts of mechanical and electrical components on lifting equipment;
- Test and inspection procedures on lifting equipment; and
- Specifically-defined structures on lifting equipment.

5.3 Operations and Maintenance

This would mostly deal with investigating failure or underperformance of lifting equipment and the synthesis of implemented and proven solutions to avoid recurrence of the problem. In addition, this category of work will also involve the practical improvement recommended for optimising the operational efficiencies. The LMI’s when performing the abovementioned work must apply engineering judgment to all work he or she does in the management of operations.

The candidate LMI ability to assess design work must include, but would not be limited to the following criteria:

- Conformance to design specifications, health and safety regulations;
- Ease of fabrication and assembly;
- Constructability;
- Maintainability;
• Conformance to environmental requirements;
• Ergonomic considerations;
• Life cycle costs; and
• Alternative solutions.

5.4 Research and Development

This type of work may be performed in research and product development centres of business organizations or at the academic institutions. Candidates LMI must participate in research and development work that is predominantly of mechanical and electrical engineering nature, and this work must include application of the various aspects of mechanical engineering, including product or system testing under controlled experimental conditions.

5.5 Risk and Impact Mitigation

The potential impact of ethically bound and evaluated LMI, who are listed on a register, conducting regular inspections in a prescribed manner, is incalculable. Their proactive identification of potential hazards and risks / incidents will definitely lead to less incidents/accidents, minimising loss of life and injury, as well as lost productivity and reduction in environmental impacts. All stakeholders, which include manufacturers, equipment users, rental organisations, maintainers and LMI, agree that registration of inspectors, after evaluation, and being ethically bound, will be of tremendous advantage to the industry. Some of the obvious advantages are as follows:

• The Department of Labour promulgated legislation to ensure that only registered persons may undertake inspections;
• The registered LMI are bound to report unsafe conditions to users, owners or the Department of Labour;
• A registered LMI could offer trustworthy constructive advice or service to the industry within his or her competence;
• The registered LMI should be kept abreast of new development by Continuous Professional Development (CPD);
• Easy access to the LMI via known details could involve them in assisting with standard and regulation development; and,
• Registered LMI will receive recognition from industry while enjoying protection.

6. DEVELOPING COMPETENCY: DOCUMENT (R-08-SC)

6.1 Contextual Knowledge

Candidates LMI are expected to be aware of the engineering profession requirements and the recognised Voluntary Associations (VAs), organisations and mentors applicable to the LMI.

Candidates LMI are encouraged to familiarise themselves with the process industries in general by reading journals, joining industry associations and attending training courses and conferences. This includes gaining knowledge of industry standards and specifications such as SANS, ASME, ISO, relevant Acts and regulations.

The practice area of LMI identifies specific contextual activities that are considered an essential component of the development of competence of the LMI. These include awareness of basic workshop, manufacturing, fabrication and on site activities and the competencies required of the engineer, technologist, technician, LMI and artisan. Exposure to practice in these areas will be identified in each training programme within the employer environment.

6.2 Functions Performed

Special considerations in the Lifting Machinery Equipment group and each specific type of equipment or specialty must be provided to the competencies specified in the following groups as described in the Degree of Responsibility scales in document R-04-SC:

• Group A: Knowledge based problem solving (this should be a strong focus);
• Group B: Management and Communication;
• Group C: Identifying and mitigating the impacts of engineering activity;
• Group D: Judgment and responsibility;
• Group E: Independent learning; and
• Group F: Lifting Equipment Sub Discipline-specific Requirements.

It is very useful to measure the progression of the candidate’s competency by making use of the scales for Degree of Responsibility, Problem Solving and Engineering Activity as specified in the relevant documentation.

Appendix B was developed against the Degree of Responsibility scale. Activities should be selected to ensure that the candidate reaches the required level of competency and responsibility.

It should be noted that the Candidate LMI working at Responsibility level E on the Degree of Responsibility Scale carries the responsibility appropriate to that of a registered person except that the Candidate LMI’s supervisor is accountable for the candidate’s recommendations and decisions.

The nature of work and degrees of responsibility defined in document R-04-SC, are used here (and in Appendix B below):

<table>
<thead>
<tr>
<th>A: Being Exposed</th>
<th>B: Assisting</th>
<th>C: Participating</th>
<th>D: Contributing</th>
<th>E: Performing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergoes induction, observes processes, work of competent practitioners.</td>
<td>Performs specific processes, under close supervision.</td>
<td>Performs specific processes as directed with limited supervision.</td>
<td>Performs specific work with detailed approval of work outputs.</td>
<td>Works in team without supervision, recommends work outputs, responsible but not accountable</td>
</tr>
<tr>
<td>Responsible to supervisor</td>
<td></td>
<td>Limited responsibility for work output</td>
<td>Full responsibility for supervised work</td>
<td>Full responsibility to supervisor for immediate quality of work</td>
</tr>
<tr>
<td></td>
<td>Limited responsibility for work output</td>
<td>Full responsibility for supervised work</td>
<td></td>
<td>Level of responsibility to supervisor is appropriate to a registered person, supervisor is accountable for applicant’s decisions</td>
</tr>
</tbody>
</table>
The mentor and the Candidate LMI must identify at which level of responsibility an activity provides the compliance with and demonstration of the various outcomes. The evidence of the candidate's activities will be recorded on the appropriate system such that it meets the requirements of the Training Elements, Appendix B. ECSA will specify the applicable recording system in the Application for Registration form (Usually an Engineering Report for each type of equipment with the associated Inspection and Load Test Report).

6.3 Statutory and Regulatory Requirements

Candidates LMI are expected to have a working knowledge of the following regulations, Acts and standards, and how they affect their working environment as indicated in Appendix B and the following examples of relevant Acts and regulations:

- Machinery and Works Regulations, especially DMR 18;
- Labour Relations Act 66 of 1995;
- Industry specific work instructions including manufacturer instructions applicable to specific lifting equipment types;
- SANS and other international standards such as ISO, EN, DIN or US Federal Standards;
- ISO 9001: 2015;
- Construction Regulations 20-Cranes; and,

Many other Acts or SANS Standards not listed here may also be pertinent to a Candidate LMI’s work environment. Candidate LMI will be expected to have a basic knowledge of the applicable Acts and SANS Standards to investigate whether any Acts or SANS Standards are applicable to a particular work environment.
6.4 Desirable Formal Learning

Candidate LMI should register with the relevant Voluntary Association (VAs) to access lists of training, conferences and seminars and other relevant information. The following list of formal learning activities is by no means extensive and is only a sample of some useful course types:

- CPD courses on specific disciplines and equipment types;
- Elementary Project Management;
- Negotiation Skills;
- Risk Analysis;
- Quality Systems;
- Occupation Health and Safety Maintenance Engineering Environmental Impacts;
- Professional skills report writing and communication planning methods;
- Computers and IT Knowledge;
- Construction Regulations; and,
- Problem solving and analysis tools.

7. PROGRAMME STRUCTURE AND SEQUENCING

7.1 Best Practice

Best practice is a developmental process that assists candidates in becoming registered Professional Engineering Technologists. Best practice comprises the process for continuous development of the candidate. A number of courses (technical and management) must be attended in order to gain the Initial Professional Development (IPD) points required for registration. This is in addition to on-the-job learning at the organisation in which the candidate is employed. Refer to Lifting Equipment Engineering Association of South Africa (LEEASA) for best practice ideas. Candidates may register with these bodies to gain access to courses, articles and relevant information for their development. This may also extend the opportunity to meet with experts during seminars.

It is suggested that the Candidate LMI works with their mentors to select appropriate equipment types to gain exposure to eventual responsibility for inspection and load testing on the lifting machine(s) selected. A regular reporting structure with suitable recording of
evidence of achievement against the competency outcomes and responsibility needs to be in place.

There is no ideal training programme structure or unique sequencing that constitutes best practice. The training programme for each candidate LMI will depend on the work opportunities assigned to the candidate by employer. This means that each candidate effectively undertakes a unique programme in which the various activities carried out at the discipline-specific level are linked to the generic competency requirements of document R-08-SC.

7.2 Realities

Generally, irrespective of the equipment type(s), it is unlikely that the period of training will be three years, the minimum time required by ECSA. Typically, it will be longer and would be determined amongst others by the availability of functions in the actual work situation.

Each candidate will effectively undertake a unique programme where the various activities carried out at the discipline-specific level are then linked to the generic competency requirements of R-08-SC and the Compulsory Sub Discipline-specific Requirements to be met during the Candidacy.

7.3 Generalists, specialists, researchers and academics

Document R-08-SC adequately describes what would be expected of persons whose formative development has not followed a conventional path, for example academics, researchers, specialists and those who have not followed a candidate training programme. The overriding consideration is that, irrespective of the route followed, the applicant must provide evidence of competence against the standard and the Sub Discipline-specific Requirements.

7.4 Multi-disciplinary exposure

Interface management between various disciplines needs to be formalised. Details of signed-off interface documents between different disciplines are essential.
7.5 Orientation Requirements

- Company Safety Regulations;
- Company Code of Conduct;
- Company Staff Code and Regulations;
- Company records and record keeping;
- Typical functions and activities in the company; and
- Hands-on experience and orientation in each of the major company divisions.

7.6 Moving into or Changing Candidacy Programmes

This DSTG assumes that the Candidate LMI enters a programme after graduation or achieved relevant educational level requirements and continues with the programme until ready to submit an application for registration. The guide also assumes that the candidate LMI is supervised and mentored (RLMI) by persons who meet the requirements in document R-04-SC. In the case of a person changing from one candidacy programme to another or moving into a candidacy programme from a less structured environment, it is essential that the following steps be completed:

- The Candidate LMI must complete the Training and Experience Summary (TES) and Training and Experience Reports (TERs) for the previous programme or unstructured experience. In the latter case, it is important to reconstruct the experience as accurately as possible. The TERs must be signed off in the appropriate manner.
- On entering the new programme, the RLMI mentor and supervisor should review the Candidate LMI’s development while being mindful of the experience and opportunities and requirements of the new programme and plan at least the next phase of the candidate’s programme.
- The Candidate LMI must complete the Sub Discipline-Specific Requirements Report (SDSRR) on elements already covered during the first part of the candidacy.

7.7 Compulsory Sub Discipline-specific Requirements to be met during the Candidacy

There is a critical need in the industry to identify people who are able to conduct the essential operations associated with efficient and safe lifting machinery inspection. This will lead to competence in the field of work and thereby add value to the industry by improving
safety resulting in economic improvement of the country. It will also lead to a balanced society in that learners will understand how the work they do fits into the greater engineering industry.

The Candidate LMI assisted by RLMI Mentors and Supervisors must during candidacy ensure that he or she is conversant with the practical knowledge set out in the Appendix A, and submit evidence as such in the form of a Sub Discipline-Specific Requirements Report (SDSRR), as part of the Application for Registration form.
<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Revision Date</th>
<th>Revision Details</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept A</td>
<td>19 April 2013</td>
<td>Initial attempt at LMI DSTG based on R-05-MEC-PN with own Annexures A and B added. Needs input from LMI Registration Committee and CRC Specified Category Sub-committee</td>
<td>Erasmus/JIC</td>
</tr>
<tr>
<td>Concept B</td>
<td>5 June 2015</td>
<td>Providing for a higher level type of Specified Category called Engineering Management. Incorporating editing by Dr Stidworthy and Mr Van Niekerk.</td>
<td>CRC Working Group</td>
</tr>
<tr>
<td>Concept C</td>
<td>5 June 2015</td>
<td>Logical improvements recommended by the WG implemented. Concept of sub-discipline added.</td>
<td>Working Group (WG) draft for submission to the CRC, and SC Committees</td>
</tr>
<tr>
<td>Concept D</td>
<td>29 July 2015</td>
<td>Amended and approved by Working Group</td>
<td>Working Group (WG) draft for submission to the CRC, and SC Committees</td>
</tr>
<tr>
<td>Rev 1</td>
<td>5 Nove 2015</td>
<td>Approval</td>
<td>Approved by CRC</td>
</tr>
<tr>
<td>Rev 2</td>
<td>29 July 2019</td>
<td>Approval</td>
<td>RPSC</td>
</tr>
</tbody>
</table>

The sub Discipline-Specific Training Requirements for

Candidate Lifting Machinery Inspectors

Revision 2 dated 10 October 2019 and consisting 21 pages reviewed for adequacy by the Business Unit Manager and is approved by the Executive: Research, Policy and Standards (RPS).

![Signature]

Business Unit Manager

![Signature]

Executive: RPS

This definitive version of this policy is available on our website.

CONTROLLED DISCLOSURE

When downloaded for the ECSA Document Management System, this document is uncontrolled and the responsibility rests with the user to ensure that it is in line with the authorised version on the database. If the 'original' stamp in red does not appear on each page, this document is uncontrolled.
APPENDIX A
Sub Discipline-Specific Requirements Report

Surname and Initials:

Use this form to report in about 100 words per statement under Requirements 1 to 5 below on the applicant’s personal knowledge about the requirements. Attach to this report the actual work schedule and load test report for each equipment type (listed on page 1 of the Engineering Report, Form R-03-ER-SC) applied for, done by the applicant under the supervision of a registered LMI.

<table>
<thead>
<tr>
<th>1. Communicate in the workplace</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Know how compliance and non-compliance reports are generated from available data after completion of an inspection.</td>
<td></td>
</tr>
<tr>
<td>1.2 Understand the importance of data being presented in accordance with the relevant needs of target audiences.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Compile and maintain work schedules</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Inspection schedules are described in terms of their purpose and process.</td>
<td></td>
</tr>
<tr>
<td>2.2 Know how inspection schedules are completed in accordance with agreed timeframes and efficiency.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Apply engineering skills to the workplace</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Knowledge of hydraulic flow characteristics and measurement of flow in terms of application in lifting equipment.</td>
<td></td>
</tr>
<tr>
<td>3.2 Ability to explain ferrous and non-ferrous metals and alloys in terms of their properties and uses as applicable to lifting equipment.</td>
<td></td>
</tr>
<tr>
<td>3.3 Ability to explain thermoplastic and thermostetting plastics in terms of their properties and uses as applicable to lifting equipment.</td>
<td></td>
</tr>
<tr>
<td>3.4 Knowledge of basic single- and three phase electrical systems including basic AC and DC motor control and safety measures on electrical equipment.</td>
<td></td>
</tr>
<tr>
<td>3.5 Ability to explain load tension in steel wire ropes and how corrosion in steel wire ropes must be counteracted.</td>
<td></td>
</tr>
<tr>
<td>3.6 Knowledge or exposure to lifting machine manufacture</td>
<td></td>
</tr>
<tr>
<td>3.7 Knowledge or exposure to creation and commissioning of lifting machines</td>
<td></td>
</tr>
<tr>
<td>3.8 Knowledge or exposure to the maintenance required for lifting machines</td>
<td></td>
</tr>
</tbody>
</table>

4. Comply with relevant legislation in the workplace (e.g. DMR 18)

| 4.1 In accordance with work activities, interpret legislation relevant to inspection activities. |
| 4.2 In accordance with workplace requirements, identify and access legislation relevant to inspection activities. |
| 4.3 Understand the implications of non-compliance with legislation, and able to explain this in terms of work processes and penalties. |

5. Inspect lifting machinery and equipment

| 5.1 Able to explain the purpose of conducting various tests in terms of relevant legislation and user safety standards. |
| 5.2 Understand why the inspection and test equipment selected must be appropriate to the inspection required. |
| 5.3 Know how the work area must be prepared for the relevant inspection to be done in accordance with the requirements. |
| 5.4 Know why and how public access to the worksite must be restricted in accordance with statutory requirements and workplace procedures. |
| 5.5 Conversant with the procedure to inspect and test equipment in accordance with test schedules and relevant safety standards. |
| 5.6 Able to identify and report to the relevant stakeholder on deviations from acceptable standards in accordance with statutory requirements and manufacturer specifications. |

Signature of Applicant: ________________________________ Date: __________________________

Signature of Mentor / Supervisor: ______________________

Name of Mentor/Supervisor printed: __________________________ Tel. No ____________

CONTROLLED DISCLOSURE

When downloaded for the ECSA Document Management System, this document is uncontrolled and the responsibility rests with the user to ensure that it is in line with the authorised version on the database. If the ‘original’ stamp in red does not appear on each page, this document is uncontrolled.
SPECIFIC EQUIPMENT TYPES RECOGNISED FOR REGISTRATION AS A LIFTING MACHINERY INSPECTOR

<table>
<thead>
<tr>
<th>No.</th>
<th>Description of Equipment Type</th>
<th>Standard Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lifting Tackle (Applicable to all ECSA registered LMI's)</td>
<td>SANS 1820, SANS 1819, SANS 94-2, SANS 1824, SANS 4309</td>
</tr>
<tr>
<td></td>
<td>Lifting tackle includes all slings, fittings and other devices attach the load to the crane or hoist. All lifting tackle must supplied with manufacturer’s test or conformance and properly marked for traceability as well as the WLL. Lifting tackle must not be periodically load tested only inspected, at intervals not exceeding 3 months, by appointed lifting tackle inspector to conform to the OHS DMR 18 requirements. Lifting tackle constitute:</td>
<td>Generally, to SANS 240R 7531 and EN 13155. Generally to SANS EN 50818 and SANS 7593. Generally to SANS 94 EN’1492 Parts 1 and 2, Generally to SANS 8539 and SANS 1595</td>
</tr>
<tr>
<td></td>
<td>• Steel Wire Rope (SWR) slings</td>
<td>Generally to SANS ISO 8539</td>
</tr>
<tr>
<td></td>
<td>• Alloy Chain slings</td>
<td>Generally to SANS 2415 and US Fed Spec RR C 271</td>
</tr>
<tr>
<td></td>
<td>• Webbing slings</td>
<td>Generally, to SANS 813 SANS 687</td>
</tr>
<tr>
<td></td>
<td>• Hooks: Eye type and clevis type</td>
<td></td>
</tr>
</tbody>
</table>
SPECIFIC EQUIPMENT TYPES RECOGNISED FOR REGISTRATION AS A LIFTING MACHINERY INSPECTOR

<table>
<thead>
<tr>
<th>No.</th>
<th>Description of Equipment Type</th>
<th>Standard Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Chain Blocks and Lever Hoists</td>
<td>SANS 500, SANS 1636, SANS 1594</td>
</tr>
<tr>
<td></td>
<td>These portable lifting machines are also known as hoists or included as hand powered lifting devices in draft DMR 2014 definitions. They are included in the DOL requirements for annual load testing. They also include Cable pullers.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Forklifts</td>
<td>SANS 10388, SANS 2328, SANS 10087-6</td>
</tr>
<tr>
<td></td>
<td>These lift trucks include attachments and special equipment and constitute:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Counter balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Forklifts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Side loaders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rail or tyre type stacker and reach lift trucks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pedestrian controlled lift trucks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Order picking lift rucks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pallet trucks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tele handlers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rough terrain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Forklift trucks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Large lift trucks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Truck mounted fork lifts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Include fixed adaptations of the superstructure and constitute:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Truck mounted cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fixed or truck mounted loader cranes, knuckle boom carrier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pick and carry cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mobile harbor cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Crawler lattice boom cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lattice boom cranes on tyre wheeled carriers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rough terrain and/or centre mounted cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• All terrain cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Carry deck cranes</td>
<td></td>
</tr>
</tbody>
</table>
SPECIFIC EQUIPMENT TYPES RECOGNISED FOR REGISTRATION AS A LIFTING MACHINERY INSPECTOR

<table>
<thead>
<tr>
<th>No.</th>
<th>Description of Equipment Type</th>
<th>Standard Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Overhead and Gantry Cranes</td>
<td>SANS 10375, SANS 1599-1, SANS 1599-2, SANS 25599</td>
</tr>
<tr>
<td></td>
<td>These constitute:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Overhead cranes Gantry cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rail mounted cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Free standing and/or permanently attached jib cranes Goliath cranes</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Tower Cranes</td>
<td>SANS 522, SANS 4301-3, SANS 12480-1 SANS 12480-3</td>
</tr>
<tr>
<td>7.</td>
<td>Ships Cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All ship cranes including Scotch Derrick cranes</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Wharf side Cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Used to travel on rails and load railway trucks which travel on rails underneath the cranes</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Reach Stackers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mobile cranes specially designed to move and stack containers, including the forklift counter balance types where RCI must be fitted, whether the spreader is manual or automatic</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Straddle Carriers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All mobile self-propelled tyre type machines similar to gantry cranes</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Container Cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constituting:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Container cranes - Large dockside gantry crane fixed on rails at container terminals for loading and unloading containers from container ships or inland, and road to rail cranes Container handlers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reach stackers (9 above)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Truck mounted side loading container carriers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Straddle carriers (10 above)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rubber tyre gantries</td>
<td></td>
</tr>
</tbody>
</table>
SPECIFIC EQUIPMENT TYPES RECOGNISED FOR REGISTRATION AS A LIFTING MACHINERY INSPECTOR

<table>
<thead>
<tr>
<th>No.</th>
<th>Description of Equipment Type</th>
<th>Standard Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>Aerial Platforms
They constitute the following:Boom type (cherry pickers)Special insulated aerial platformsScissor lifts (mobile or fixed)</td>
<td>SANS 50280, 16368, 18893, BS EN 61057, Ansi A92.2</td>
</tr>
<tr>
<td>13.</td>
<td>Suspended Access Platforms
Units that are hang from suspension anchors/points, and constitute:Temporary suspended platformsBuilding maintenance unit (permanently suspended platforms) Mobile elevating work platforms</td>
<td>SANS 51808 and 10295 part 1 and 2, SANS 1903</td>
</tr>
<tr>
<td>14.</td>
<td>Industrial Lifting Devices (Jacks)
All special industrial applications (usually heavy lifting devices)</td>
<td>SANS 687 and others</td>
</tr>
<tr>
<td>16.</td>
<td>Tail Lifters
All tail lifts fitted to a mobile vehicle</td>
<td>SANS 1055</td>
</tr>
<tr>
<td>17.</td>
<td>Vehicle Hoists
All hoists designed to lift vehicles of any capacity or design, constituting:4 posters2 postersScissor lift type (excluding dock levelers)
Hydraulic type</td>
<td>SANS 71</td>
</tr>
</tbody>
</table>
SPECIFIC EQUIPMENT TYPES RECOGNISED FOR REGISTRATION AS A LIFTING MACHINERY INSPECTOR

<table>
<thead>
<tr>
<th>No.</th>
<th>Description of Equipment Type</th>
<th>Standard Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Other Categories</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• More and more specialised cranes are used, like: Side cranes (e.g. bull dozers for pipe laying)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Floating cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sugar cane loading cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Railway cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Timber cranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Production loaders/ Scrap metal cranes</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cranes Maintenance Manual</td>
<td>SANS12478-1, SANS18893,</td>
</tr>
<tr>
<td></td>
<td>• Mobile elevating work Platform-Safety principles,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inspection, maintenance and operation</td>
<td>SANS50818-6,</td>
</tr>
<tr>
<td></td>
<td>• Cranes-Jib cranes-international standards for</td>
<td>SANS53306</td>
</tr>
<tr>
<td></td>
<td>• Design, manufacturing, use and recommendations</td>
<td>SANS 25599</td>
</tr>
<tr>
<td></td>
<td>• Short link chain for lifting Purposes-Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Part 6: Chain Slings-Specifications for information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• for use and maintenance to be provided by the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• manufacturer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maintenance Terminology</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Installation</td>
<td>SANS4309</td>
</tr>
<tr>
<td></td>
<td>• Cranes-Wire ropes-Care, Maintenance, installation, examination and discard</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

TRAINING ELEMENTS

This guide is written for the recent graduate who is training and gaining experience toward registration ("Benchmark Route"). Mature applicants for registration ("Alternative Route") may apply the guide retrospectively to identify possible gaps in their development.

Synopsis: A candidate specified category practitioner should achieve specific competencies at the prescribed level during his/her development towards registration, at the same time accepting more and more responsibility as experience is gained. The outcomes achieved and established during the candidacy phase should form the template to all engineering work performed after registration regardless of the level of responsibility at any particular stage of an engineering career:

2. Confirm understanding of instructions received and clarify if necessary;
3. Use theoretical training to develop possible approaches to do the work: select the best and present to the recipient;
4. Apply theoretical knowledge to justify decisions taken and processes used;
5. Understand role in the work team, and plan and schedule work accordingly;
6. Issue complete and clear instructions and report comprehensively on work completed;
7. Be sensitive about the impact of the engineering activity and take action to mitigate this impact;
8. Consider and adhere to legislation applicable to the task and the associated risk identification and management;
9. Adhere strictly to high ethical behavioural standards and ECSA’s Code of Conduct;
10. Display sound judgement by considering all factors, their interrelationship, consequences and evaluation when all evidence is not available;
11. Accept responsibility for own work by using theory to support decisions, seeking advice when uncertain and evaluating shortcomings; and
12. Become conversant with your employer’s training and development program and develop your own lifelong development program within this framework.

Specifically-defined engineering work is usually restricted to applying standard procedures, codes and systems, i.e. work that was done before within the narrow field of application.

Responsibility Levels: A = Being Exposed; B = Assisting; C = Participating; D = Contributing; E = Performing

CONTROLLED DISCLOSURE

When downloaded for the ECSA Document Management System, this document is uncontrolled and the responsibility rests with the user to ensure that it is in line with the authorised version on the database. If the ‘original’ stamp in red does not appear on each page, this document is uncontrolled.
Competency Standards for Registration as a Specified Category Practitioner

1. Purpose

This standard defines the competence required for registration as a Specified Category Practitioner. Definitions of terms having particular meaning within this standard are given in text at the end of this Annexure and in document R-01-SC.

2. Demonstration of Competence

Competence must be demonstrated within specified engineering activities, defined below, by integrated performance of the outcomes defined in section 3 below at the level defined for each outcome. Required contexts and functions may be specified in the applicable Discipline Specific Training Guidelines.

Level Descriptor: Specifically-defined engineering activities have several of the following characteristics:

- **a)** Scope of specific practice area is defined by specific techniques applied; change by adopting new specific techniques into current practice;
- **b)** Practice area is located within a wider, complex context, with specifically-defined working relationships with other parties and disciplines;
- **c)** Work involves specific familiar resources, including people, money, equipment, materials, technologies;
- **d)** Require resolution of interactions manifested between specific technical factors with limited impact on wider issues;
- **e)** Are constrained by operational context, defined work package, time, finance, infrastructure, resources, facilities, standards and codes, applicable laws;
- **f)** Have risks and consequences that are locally important but are specifically defined.

Activities include but are not limited to: planning, investigation and problem resolution; improvement of materials, components, systems or processes, engineering operations, maintenance, project management, development and commercialisation.

Explanation and Responsibility Level

- **Discipline Specific Training Guides (DSTG)** gives context to the purpose of the Competency Standards. Registered Specified Category Practitioners operate within the nine disciplines recognised by ECSA. Each discipline can be further divided into sub-disciplines and finally into specific workplaces or competency areas. DSTGs are used to facilitate experiential development towards ECSA registration and assist in compiling the required portfolio of evidence (specifically the Engineering Report in the application form).

NOTE: The training period must be utilised to develop the competence of the trainee towards achieving the standards below at a responsibility level E, i.e. Performing. (Refer to R-04-SC, Table 4)

Engineering activities can be divided into (approximately):

- 5% Complex (Professional Engineers)
- 5% Broadly Defined (Professional Engineering Technologists)
- 10% Well-defined (Professional Engineering Technicians)
- 15% Specifically-defined (Registered Specified Categories)
- 20% Skilled Workman (Engineering Artisan)
- 45% Unskilled Workman (Artisan Assistants)

The activities can be in-house or contracted out; evidence of integrated performance can be submitted irrespective of the situation.

Level Descriptor: Specifically-defined engineering activities in the specific discipline is characterised by several or all of:

- **a)** Scope of practice area does not cover the entire field of the specific discipline (exposure limited to the relevant components of the specific discipline and specific workplace). Techniques applied are largely limited to extensive research and change by adopting new specific techniques into current practice is the exception;
- **b)** Practice area varies substantially with unlimited location possibilities and an additional responsibility to identify the need for complex, broadly defined and/or well-defined advice to be included in the specifically-defined working relationships with other parties and disciplines;
- **c)** The bulk of the work involves familiar, defined range of resources, including people, money, equipment, materials, technologies;
- **d)** Most of the impacts in the specific discipline are on wider issues, and although occurring frequently, are specifically-defined and can be resolved by following established procedures.
- **e)** The work packages and associated parameters are constrained by operational context with variations limited to different locations only. (Cannot be covered by laws, standards and codes only).
- **f)** Even locally important minor risks can have far reaching consequences.

Activities include but are not limited to: design; planning; investigation and problem resolution; improvement of materials, components, systems or processes; engineering operations; maintenance; project management and general management. For Specified Category Practitioners, research, development and commercialisation happen more frequently in some disciplines and are seldom encountered in others.
3. Outcomes to be satisfied:

Group A: Engineering Problem Solving.

<table>
<thead>
<tr>
<th>Level Descriptor:</th>
<th>Explanation and Responsibility Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifically-defined engineering problems have the following characteristics:</td>
<td>Responsibility level E Analysis of an engineering problem means the "separation into parts possibly with comment and judgement".</td>
</tr>
<tr>
<td>(a) can be solved mainly by specific practical engineering knowledge, underpinned by related theory; and one or more of:</td>
<td>(a) practical problems for Specified Category Practitioners means the problem encountered cannot be solved by artisans because theoretical calculations and engineering decisions are necessary to substantiate the solution proposed;</td>
</tr>
<tr>
<td>(b) are fully defined but require feedback;</td>
<td>(b) further investigation to identify the nature of the problem is seldom necessary;</td>
</tr>
<tr>
<td>(c) are discrete, specifically focused tasks within engineering systems;</td>
<td>(c) discrete means individually distinct: The problem is easily recognised as part of the larger engineering task, project or operation;</td>
</tr>
<tr>
<td>(d) are routine, frequently encountered and in familiar specified context;</td>
<td>(d) recognised that the problem is within the specific scope and occurred in the past or the work to be done is a standard operation – seldom something new;</td>
</tr>
<tr>
<td>(e) can be solved by standardized or prescribed ways;</td>
<td>(e) solving the problem does not require the development of a new solution – find out how it was solved/done before;</td>
</tr>
<tr>
<td>(f) are encompassed by specific standards, codes and documented procedures; requires authorization to work outside limits;</td>
<td>(f) encompassed means encircled: The standards, codes and documented procedures must be obtained to solve the problem and; authorisation from Professionals responsible must be obtained to waive the stipulations;</td>
</tr>
<tr>
<td>(g) information is concrete, specific and largely complete, but requires checking and possible supplementation;</td>
<td>(g) the responsibility lies with the Specified Category Practitioner to check that the information received as part of the instruction is correct, and added to as is necessary to ensure the correct and complete execution of the work;</td>
</tr>
<tr>
<td>(h) involve specific issues but few of these imposing conflicting constraints and a specific range of interested and affected parties;</td>
<td>(h) the problem handled by a Specified Category Practitioner must be limited to well know specific matters needing standardised solutions without possible complications;</td>
</tr>
<tr>
<td>and one or both of:</td>
<td>(i) practical solutions to problems include knowledge of the skills displayed by Practical Specialists and Engineering Artisans without sacrificing theoretical engineering principles and / or cutting corners to satisfy parties involved;</td>
</tr>
<tr>
<td>(i) requires practical judgement in specific practice area in evaluating solutions, considering interfaces to other role- players;</td>
<td>(j) Specified Category Practitioners must realise that their engineering actions might seem to be of local importance only, but may develop into further problems where support from Engineering Professionals might be needed to deal with these consequences.</td>
</tr>
<tr>
<td>(j) have consequences which are locally important but within a specified category (wider impact is dealt with by others).</td>
<td></td>
</tr>
</tbody>
</table>

Competency Indicators: A structured analysis of specifically defined problems typified by the following performances within the competency area is expected:

1. **State how you interpreted the work instruction received, checking with your client or supervisor if your interpretation is correct**
2. **Describe how you analysed, obtained and evaluated further clarifying information, and if the instruction was revised as a result.**

To perform an engineering task an Specified Category Practitioner will typically receive an instruction from a senior person (customer) to do this task, and must:

1. **State how you interpreted the work instruction received, checking with your client or supervisor if your interpretation is correct**
 1.1 Make very sure that the instruction is complete, clear and within his/her capability and that the person who issued the instruction agrees with his/her interpretation.

1. **Describe how you analysed, obtained and evaluated further clarifying information, and if the instruction was revised as a result.**
 1.2 Ensure that the instruction and information to do the work is fully understood and is complete, including the engineering theory needed to understand the task and to carry out and/or check calculations, and the acceptance criteria. If needed supplementary information must be gathered, studied and understood.

CONTROLLED DISCLOSURE

When downloaded for the ECSA Document Management System, this document is uncontrolled and the responsibility rests with the user to ensure that it is in line with the authorised version on the database. If the "original" stamp in red does not appear on each page, this document is uncontrolled.
Range Statement
The problem (task) may be part of a larger engineering activity or may be stand alone. The design (plan- ning) problem is amenable to solution by specific techniques practiced regularly. This outcome is concerned with the under- standing of a problem: Outcome 2 is concerned with the solution.

Outcome 2:
Design or develop (plan) sustainable solutions to specifically-defined engineering problems (tasks).

Responsibility level C
- Design means “drawing or outline from which something can be made”.
- Develop means “come or bring into a state in which it is active or visible”.

Competency Indicators:
This outcome is normally demonstrated after a problem analysis as defined in outcome 1. Working systematically to synthesise a solution to a well-defined problem, typified by the following performances is expected:

1. **Describe how you designed or developed and analysed alternative approaches to do the work. Impact and sustainability checked. Calculations attached.**
2. **State what the final solution to perform the work was, client or your supervisor in agreement.**

Range Statement
The solution conforms to specific established methods, techniques or procedures within the specifically-defined competency area. Engineering should not look only to decrease impacts, but also to restore and regenerate through design.

Outcome 3:
Comprehend and apply knowledge embodied in established specific engineering practices and knowledge specific to the field in which he/she practices.

Responsibility level E
- Comprehend means “to understand fully”. The jurisdiction in which a Specified Category Practitioner practices is given in Clauses 4 to 7 of the applicable Discipline Specific Training Guide, document R-05-nnn-SC

CONTROLLED DISCLOSURE

When downloaded for the ECSA Document Management System, this document is uncontrolled and the responsibility rests with the user to ensure that it is in line with the authorised version on the database. If the ‘original’ stamp in red does not appear on each page, this document is uncontrolled.
Competency Indicators:
This outcome is normally demonstrated in the course of design, investigation or operations, confined to the competency area.

- **3.1** State what HCert level engineering standard procedures and systems you used to execute the work, and how HCert level theory was applied to understand and/or verify these procedures;
- **3.2** Give your own HCert level theoretical calculations and/or reasoning on why the application of this theory is considered to be correct (Actual examples).

Range Statement:
Applicable knowledge includes:

- **(a)** Technical knowledge that is applicable to the practice area irrespective of location, supplemented by locally relevant knowledge, for example established properties of local materials.
- **(b)** A working knowledge of interacting disciplines confined to the competency area. Codified knowledge in related areas: financial, statutory, safety, management and sustainability.
- **(c)** Jurisdictional knowledge includes legal and regulatory requirements as well as prescribed codes of practice.

Design (development) work for Specified Category Practitioners is mostly to utilise, configure, certify, test, verify, etc. manufactured components or proven engineering or management systems, and repetitive design (development) work using an existing design (development) as an example. Specified Category Practitioners apply existing codes, policies and procedures in their design (development) work. Investigations on specifically-defined incidents and condition monitoring and operations mostly on controlling, maintaining and improving engineering systems and operations.

- **3.1** The understanding of specifically-defined procedures and techniques must be based on fundamental mathematical, scientific and engineering knowledge. Specific procedures and techniques applied to do the work accompanied by the underpinning theory must be given.
- **3.2** Calculations confirming the correct application and utilisation of equipment and/or systems listed in the Discipline Specific Training Guide R-05-nnn-SC must be done on practical specifically-defined activities. Reference must be made to standards and procedures used and how it was derived from HCert level theory.

CONTROLLED DISCLOSURE
When downloaded for the ECSA Document Management System, this document is uncontrolled and the responsibility rests with the user to ensure that it is in line with the authorised version on the database. If the ‘original’ stamp in red does not appear on each page, this document is uncontrolled.
Group B: Managing Engineering Activities.

<table>
<thead>
<tr>
<th>Outcome 4:</th>
<th>Explanation and Responsibility Level</th>
</tr>
</thead>
</table>
| Manage part or all of one or more specifically-defined engineering activities. | Responsibility level E
Manage means “control”. |

Competency Indicators: The display of personal and work process management abilities within the competency area is expected:

1. **State how you managed yourself, priorities, processes and resources in doing the work (e.g. bar chart);**
2. **Describe your role and contribution in the work team.**

In engineering operations and projects, Specified Category Practitioners will typically be given the responsibility to carry out specific tasks and/or complete projects:

1. **Resources are usually subdivided based on availability and controlled by a work breakdown structure and scheduling to meet deadlines.**
2. **Depending on the task, Specified Category Practitioners can be the manager, team leader, a team member, or can supervise appointed contractors.**

<table>
<thead>
<tr>
<th>Outcome 5:</th>
<th>Explanation and Responsibility Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicate clearly with others in the course of his or her specifically-defined engineering activities.</td>
<td>Responsibility level E</td>
</tr>
</tbody>
</table>

Competency Indicators: Demonstrates effective communication by:

1. **State how you presented your point of view and compiled reports after completion of the work.**
2. **State how you compiled and issued instructions to entities working on the same task.**

5.1 **Refer to Range State for Outcome 4 and 5 below.** Presentation of point of view mostly occurs in meetings and discussions with immediate supervisor.

5.2 **Refer to Range State for Outcome 4 and 5 below.**

Range Statement for Outcomes 4 and 5:

Management and communication in specifically-defined engineering involves:

- **Planning activities:**
- **Organising activities:**
- **Leading activities:**
- **Implementing activities:**
- **Controlling activities.**

Communication relates to technical aspects and wider impacts of professional work. Audience includes peers, other disciplines, clients and stakeholders audiences. Appropriate modes of communication must be selected. The Specified Category Practitioner is expected to perform the communication functions reliably and repeatedly confined to the competency area.

(a) Planning means "the arrangement for doing or using something, considered in advance".
(b) Organising means "put into working order; arrange in a system; make preparations for".
(c) Leading means to "guide the actions and opinions of; influence; persuade".
(d) Implementing means to "carry an undertaking, agreement, or promise into effect".
(e) Controlling means the "means of regulating, restraining, keeping in order; check".

Specified Category Practitioners participate in writing or adhere to specifications for the purchase of materials and/or work to be done, recommendation on tenders received, place orders and variation orders, write work instructions, report back on work done, draft, correct and revise drawings, compile test reports, use operation and maintenance manuals to write or apply work procedures, write inspection and audit reports, write commissioning reports, prepare and present motivations for new projects, compile budgets, report on studies done and calculations carried out, report on customer requirements, report on safety incidents and risk analysis, report on equipment failure, report on proposed system improvement and new techniques, report back on cost control, report on environmental impact and sustainability, etc.
Group C: Impacts of Engineering Activity.

<table>
<thead>
<tr>
<th>Outcome 6: Recognise the foreseeable social, cultural, environmental and sustainability effects of specifically-defined engineering activities generally</th>
<th>Responsibility level D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competency Indicators: This outcome is normally displayed in the course of analysis and solution of problems within the competency area, by typically:</td>
<td>Social means “people living in communities; of relations between persons and communities”. Cultural means “all the arts, beliefs, social institutions, etc. characteristic of a community”. Environmental means “surroundings, circumstances, influences”. Sustainable is defined in the definitions below.</td>
</tr>
<tr>
<td>6.1 Describe the social, cultural, environmental impact and long term sustainability of this engineering activity;</td>
<td>6.1 Engineering impacts heavily on the environment e.g. servitudes, expropriation of land, excavation of trenches with associated inconvenience, borrow pits, dust and obstruction, street and other crossings, power dips and interruptions, visual and noise pollution, malfunctions, oil and other leaks, electrocution of human beings, detrimental effect on animals and wild life, dangerous rotating and other machines, demolishing of structures, etc.</td>
</tr>
<tr>
<td>6.2 State how you communicated mitigating measures to affected parties and acquired stakeholder engagement.</td>
<td>6.2 Mitigating measures taken may include environmental impact studies, environmental impact management, community involvement and communication, barricading and warning signs, temporary crossings, alternative supplies (ring feeders and bypass roads), press releases, compensation paid, etc.</td>
</tr>
</tbody>
</table>

Outcome 7: Meet all legal and regulatory requirements, protect the health and safety of persons and adhere to sustainable practices in the course of his or her specifically-defined engineering activities.	Responsibility level E
Competency Indicators:	
7.1 List the major laws and regulations applicable to this particular activity and how sustainability practices and health and safety matters were handled.	7.1 The OHS Act is supplemented by a variety of parliamentary acts, regulations, local authority by-laws, standards and codes of practice. Places of work might have standard procedures, instructions, drawings and operation and maintenance manuals available. These documents, depending on the situation (emergency, breakdown, etc.) are consulted before work is commenced and during the activity;
7.2 State how you obtained advice in doing risk management for the work and elaborate on the risk management system applied.	7.2 It is advisable to attend a Risk Management (Assessment) course, and to investigate and study the materials, components and systems used in the workplace. The Specified Category Practitioners seeks advice from knowledgeable and experienced specialists if any doubt exist that safety and sustainability cannot be guaranteed.
Range Statement for Outcomes 6 and 7: Impacts and regulatory requirements include:
(a) Impacts to be considered are generally those identified within the established methods, techniques or procedures used in the specific practice area;
(b) Regulatory requirements are prescribed;
(c) Apply prescribed risk management strategies;
(d) Effects to be considered and methods used are defined;
(e) Prescribed safe and sustainable materials, components and systems.
(f) Prescribe maintenance protocols;
(g) Persons whose health and safety are to be protected are both inside and outside the workplace.

(a) The impacts will vary substantially with the location of the task, e.g. the impact of laying a cable or pipe in the main street of town will be entirely different to construction in a rural area. The methods, techniques or procedures will differ accordingly, and is identified and studied by the Specified Category Practitioners before starting the work.
(b) The Safety Officer and/or the Responsible Person appointed in accordance with the OHS Act usually confirm or check that the instructions are in line with regulations. The Specified Category Practitioners is responsible to see to it that this is done, and if not, establishes which regulations apply, and ensure that they are adhered to. Usually the people working on site are strictly controlled w.r.t. health and safety, but the Specified Category Practitioners checks that this is done. Tasks and projects are mostly carried out where contact with the public cannot be avoided, and safety measures like barricading and warning signs must be used and maintained.
(c) Risks are mostly associated with elevated structures, subsidence of soil, electrocution of human beings, moving parts on machinery, fraud and corruption and theft. Risk management strategies are usually done by more senior staff, but are understood and applied by the Specified Category Practitioners.
(d) Effects associated with risk management are mostly well known if not obvious, and methods used to address, clearly defined.
(e) Usually the safe and sustainable materials, components and systems are prescribed by Professionals or other specialists. It is the responsibility of the Specified Category Practitioners to use his/her knowledge and experience to check and interpret what is prescribed and report anything that he/she is not satisfied with.
(f) Draw up maintenance systems and procedures from Codes of Practice and Manufacturer's Instructions.
(g) Staff working on the task or project as well as persons affected by the engineering work being carried out.
Group D: Exercise judgment, take responsibility, and act ethically.

| Outcome 8: Conduct engineering activities ethically. | Responsibility level E: Ethically means “science of morals; moral soundness”.
Moral means “moral habits; standards of behaviour; principles of right and wrong”.

Competency Indicators:
- Sensitivity to ethical issues and the adoption of a systematic approach to resolving these issues is expected, typified by:
 - **8.1** State how you identified ethical issues and affected parties and their interest and what you did about it when a problem arose.
 - **8.2** Confirm that you are conversant and in compliance with ECSA’s Code of Conduct and why this is important in your work.
 - Systematic means “methodical; based on a system”.
 - **8.1** Ethical problems that can occur include tender fraud, payment bribery, alcohol abuse, sexual harassment, absenteeism, favouritism, defamation, fraudulent overtime claims, fraudulent expenses claimed, fraudulent qualifications, misrepresentation of facts, etc.
 - **8.2** ECSA’s Code of Conduct, as per ECSA’s website, is known and adhered to. Applicable examples given.

| Outcome 9: Exercise sound judgement in the course of *specifically-defined* engineering activities | Responsibility level E: Judgement means “good sense: ability to judge”.

Competency Indicators:
- Exhibition of judgement is expected by:
 - **9.1** State the factors applicable to the work, their interrelationship and how you applied the most important factors;
 - **9.2** Describe how you foresaw work consequences and evaluated situations in the absence of full evidence.
 - **9.1** The extent of a project or task given to a junior Specified Category Practitioners is characterised by the limited number of factors and their resulting interdependence. He/she will seek advice if educational and/or experiential limitations are exceeded. Examples of the main engineering factors applied must be given.
 - **9.2** Taking risky decisions will lead to equipment failure, excessive installation and maintenance cost, damage to persons and property, bankruptcy, poor service delivery, etc. Give examples.

Range Statement for Outcomes 8 and 9: Judgement is expected both within the application of the candidate’s category specific methods, techniques and specific procedures and in assessing their immediate impacts. Judgement in decision making involves:

- (a) taking limited risk factors into account some of which may be ill-defined; or
- (b) consequences are in the immediate work contexts; or
- (c) identified set of interested and affected parties with defined needs to be taken into account.

- **(a)** Seeking advice when risk factors exceed his/her capability.
- **(b)** Consequences outside the immediate work contexts, e.g. long-term, not normally handled.
- **(c)** Interested and affected parties with defined needs outside the *specifically-defined* parameters to be taken into account.
Outcome 10:
Be responsible for making decisions on part or all of all of one or more specifically-defined engineering activities

Competency Indicators: Responsibility is displayed by the following performance:

10.1 Show how you used HCert level theoretical calculations to justify decisions taken in doing engineering work. Attach actual calculations;
10.2 State how you took responsible advice on any matter falling outside your own education and experience;
10.3 Describe how you took responsibility for your own work and evaluated any shortcoming in your output

Range Statement: Responsibility must be discharged for significant parts of a one or more specifically-defined engineering activity.

Responsibility level E
Responsible means “legally or morally liable for carrying out a duty; for the care of something or somebody in a position where one may be blamed for loss, failure, etc.”

10.1 The calculations, for example fault levels, load calculations, losses, return on investment, etc. are done to ensure that the correct material and components are utilized.
10.2 The Specified Category Practitioner does not operate on tasks at a higher level than specifically-defined and consult professionals if elements of the tasks to be done are beyond his/her education and experience, e.g. power system stability, legal actions, etc.
10.3 This is in the first instance continuous self-evaluation to ascertain that the task given is done correctly, on time and within budget. Continuous feedback to the originator of the task instruction, and corrective action if necessary, forms an important element.

Note 1: Responsibility for the evaluation of work in a supervisory capacity.
Group E: Initial Professional Development (IPD)

<table>
<thead>
<tr>
<th>Outcome 11: Undertake independent learning activities sufficient to maintain and extend his or her competence</th>
<th>Explanation and Responsibility Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competency Indicators: Self-development managed by typically:</td>
<td>Responsibility level D</td>
</tr>
<tr>
<td>11.1 Provide your strategy adopted independently to enhance professional development. (IPD report);</td>
<td>11.1 If possible, a specific field of the sub-discipline is chosen, available developmental alternatives established, a program drawn up (in consultation with employer if costs are involved), and options open to expand knowledge into additional fields investigated.</td>
</tr>
<tr>
<td>11.2 Be aware of the philosophy of employer in regard to professional development.</td>
<td>11.2 Record keeping must not be left to the employer or anybody else. The trainee must manage his/her own training independently, taking initiative and be in charge of experiential development towards Specified Category Practitioner registration level. Knowledge of the employer’s policy and procedures on training is essential.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range Statement: Professional development involves:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Taking ownership of own professional development;</td>
<td>(a) This is your professional development, not the organisation you are working for.</td>
</tr>
<tr>
<td>(b) Planning own professional development strategy;</td>
<td>(b) In most places of work training is seldom organised by some training department. It is up to the Specified Category Practitioner to manage his/her own experiential development. Specified Category Practitioners frequently end up in a ‘dead-end street’ being left behind doing repetitive work. If self-development is not driven by him/herself, success is unlikely.</td>
</tr>
<tr>
<td>(c) Selecting appropriate professional development activities; and</td>
<td>(c) Preference must be given to engineering development rather than developing soft skills.</td>
</tr>
<tr>
<td>(d) Recording professional development strategy and activities; while displaying independent learning ability.</td>
<td>(d) Developing a learning culture in the workplace environment of the Specified Category Practitioner is vital to his / her success. Information is readily available, and most senior personnel in the workplace are willing to mentor, if approached.</td>
</tr>
</tbody>
</table>