ENSURING THE EXPERTISE TO GROW SOUTH AFRICA

Qualification Standard for the Advanced Certificate in Engineering: NQF Level 6

E-06-PN

REVISION No. 4: 01 September 2020
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINITIONS</td>
<td>3</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>10</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>11</td>
</tr>
<tr>
<td>1. POLICY STATEMENT</td>
<td>11</td>
</tr>
<tr>
<td>2. PURPOSE OF THIS DOCUMENT</td>
<td>11</td>
</tr>
<tr>
<td>3. FIELD</td>
<td>12</td>
</tr>
<tr>
<td>4. SUBFIELD</td>
<td>12</td>
</tr>
<tr>
<td>5. NQF EXIT LEVEL</td>
<td>12</td>
</tr>
<tr>
<td>6. CREDITS</td>
<td>12</td>
</tr>
<tr>
<td>7. ACCEPTABLE TITLES</td>
<td>12</td>
</tr>
<tr>
<td>8. ABBREVIATIONS</td>
<td>12</td>
</tr>
<tr>
<td>9. QUALIFIERS</td>
<td>12</td>
</tr>
<tr>
<td>10. PURPOSE OF THE QUALIFICATION</td>
<td>13</td>
</tr>
<tr>
<td>11. PROGRAMME STRUCTURE</td>
<td>14</td>
</tr>
<tr>
<td>11.1 Knowledge Areas in the Programme</td>
<td>14</td>
</tr>
<tr>
<td>11.2 Core and Specialist Requirements</td>
<td>15</td>
</tr>
<tr>
<td>11.3 Curriculum Content</td>
<td>15</td>
</tr>
<tr>
<td>12. ACCESS TO QUALIFICATION</td>
<td>15</td>
</tr>
<tr>
<td>13. MINIMUM LEARNING ASSUMED TO BE IN PLACE</td>
<td>16</td>
</tr>
<tr>
<td>14. GRADUATE ATTRIBUTES</td>
<td>16</td>
</tr>
<tr>
<td>15. INTERNATIONAL COMPARABILITY</td>
<td>21</td>
</tr>
<tr>
<td>16. INTEGRATED ASSESSMENT</td>
<td>21</td>
</tr>
<tr>
<td>17. RECOGNITION OF PRIOR LEARNING</td>
<td>21</td>
</tr>
<tr>
<td>18. ARTICULATION POSSIBILITIES</td>
<td>21</td>
</tr>
<tr>
<td>19. MODERATION AND REGISTRATION OF ASSESSORS</td>
<td>22</td>
</tr>
<tr>
<td>REVISION HISTORY</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX A: Consistency of Graduate Attributes with Critical Crossfield Outcomes</td>
<td>24</td>
</tr>
</tbody>
</table>
DEFINITIONS

Academic support: A process that provides additional learning support to students who are not prepared for the normal curriculum; academic support may be provided prior to or in addition to the normal curriculum.

Accreditation: Formal recognition awarded to an education or training programme through a quality assurance procedure that ensured it met the criteria laid down for the type of programme

Accredited examinations: Examinations or other forms of assessment that address the exit-level outcomes within an accredited programme

Accredited programme: A programme that has been evaluated and recognised by ECSA as meeting stated criteria

Accredited qualification: A qualification awarded on successful completion of an accredited programme

Accreditation criteria: Statements of requirements that must be satisfied by a programme in order to receive accreditation.

Assessment: The process of determining the capability or competence of an individual by evaluating performance against standards.

Assessment criteria: A set of measurable performance requirements, which indicate that a person meets a specified outcome at the required level

Branch of engineering: A generally recognised major subdivision of engineering such as the traditional disciplines of Chemical, Civil or Electrical Engineering or a cross-disciplinary field of comparable breadth, including combinations of engineering fields (e.g. Mechatronics) and the application of engineering in other fields (e.g. Bio-Medical Engineering)

Broadly-defined engineering problems: A class of problems with characteristics as defined in document E-02-PN

Category: A mode of registration defined in or under the Engineering Profession Act, 46 of 2000, that has a distinctive purpose, characteristic competencies, educational requirements and defined principal routes to registration

CONTROLLED DISCLOSURE
When downloaded for the ECSA Document Management System, this document is uncontrolled and the responsibility rests with the user to ensure that it is in line with the authorised version on the database. If the 'original' stamp in red does not appear on each page, this document is uncontrolled.

QM-TEM-001 Rev 0 – ECSA Policy/Procedure
Complementary Studies: cover those disciplines outside of engineering sciences, natural sciences and mathematics which are relevant to the practice of engineering including but not limited to engineering economics, management, the impact of technology on society, effective communication, and the humanities, social sciences or other areas that support an understanding of the world in which engineering is practised.

Complex engineering problems: A class of problems with characteristics as defined in document E-02-PE

Computing and Information Technologies: encompasses the use of computers, networking and software to support engineering activity and as an engineering activity in itself as appropriate to the discipline.

Continuous quality improvement: A process based on the concept that improvement of a process is always possible subject to on-going assessment of the process and measures to maintain and improve quality

Course: A building block of a programme with defined prerequisites, content and learning objectives with assessment, which if completed successfully provides credit towards a qualification

Credit: A measure of the volume of learning attached to a course or module calculated according to the procedure defined in the relevant standard for the type of programme; a complexity level may be associated with a number of credits

Critical: Describes a factor, component, process, issue or decision in an engineering activity from which other consequences follow; an entity or operation that must be successfully implemented or completed to ensure that a more complex operation or system can function – failure of the critical entity or operation compromises the whole.

Dublin Accord: is an agreement for the mutual agreement of engineering programmes that provide the educational foundation for professional engineering technicians.

Education Committee: The committee established by Council to address all education matters.
Educational objective: A statement of the intended achievement that graduates of a programme must accomplish, often with emphasis on the early years after graduation

Education provider: A public or private higher education institution or body that conducts programmes leading to accredited ECSA engineering qualifications of any type

Engineering design and synthesis: constitutes the systematic process of conceiving and developing materials, components, systems and processes to serve useful purposes. Design may be procedural, creative or open-ended and requires the application of engineering sciences, working under constraints, and taking into account economic, health and safety, social and environmental factors, codes of practice and applicable laws.

Engineering discipline: Synonymous with branch of engineering

Engineering education programme: An educational programme that aims to satisfy criteria prescribed by the ECSA

Engineering fundamentals: engineering sciences and natural sciences that embody a systematic formulation of engineering concepts and principles based on mathematical and natural sciences to support applications

Engineering Management: the generic management functions of planning, organising, leading and controlling, applied together with engineering knowledge in contexts including the management of projects, construction, operations, maintenance, quality, risk, change and business.

Engineering problem-solving: The process of finding solutions through a conscious and logical approach that relies on the application of engineering knowledge and skills and generic competencies

Engineering Sciences: have roots in the mathematical and physical sciences, and where applicable, in other natural sciences but extend knowledge and develop models and methods in order to lead to engineering applications and solve engineering problems.

Engineering Speciality: the extension of engineering fundamentals to create theoretical frameworks and bodies of knowledge for engineering practice areas.
Engineering sub-discipline (an engineering speciality): a generally-recognised practice area or major subdivision within an engineering discipline, for example, Structural and Geotechnical Engineering within Civil Engineering.

Evaluation: Determination of the compliance of a result with prescribed criteria based on documentation, inspection and the application of judgement supported by reasoning

External moderation: A moderation process in which the moderator(s) are not in the employ of the provider, they make no input into the programme and they have no prior contact with the students.

Face-face programme: Programme offered where lecturers and students share the same physical space during learning process

Final Accreditation: Accreditation of a programme that was given notification of termination of accreditation by the Education Committee after the previous interim accreditation.

Graduate: A qualifying learner, irrespective of whether the qualification is a degree or a diploma.

Graduate Attribute: A statement of the learning outcomes that a student must demonstrate at exit-level to qualify for an award of a qualification; these actions indicate the student’s capability to fulfil the educational objectives.

Hybrid: Combines modes of on-line education delivery, with traditional face-to-face class and laboratory activities

International Engineering Alliance (IEA): is a global organisation, which comprises members from 41 jurisdictions within 29 countries, across seven international agreements. These international agreements govern the recognition of engineering educational qualifications and professional competence. (Numbers can change as new members are admitted)

Interim Accreditation: Accreditation held at a time within the regular cycle stated by the Education Committee in the decision on the findings of the previous regular accreditation

Knowledge area: A classification of curriculum content into defined types
Knowledge profile: A description of the knowledge of a graduate in terms of the type and balance of knowledge in defined areas

Level: A measure of learning demands regarding types of problems, knowledge required, skills and responsibility, which are expressed in terms of level descriptors

Mathematical Sciences: an umbrella term embracing the techniques of mathematics, applied mathematics, numerical analysis, statistics and aspects of computer science cast in an appropriate mathematical formalism.

Moderation: The process of ensuring that assessment of an individual meets the required standard and is consistent, objective and fair

Module: Synonymous with course

Natural Sciences (formally basic science): These comprise physics (including mechanics), chemistry, Earth sciences and the biological sciences that focus on understanding the physical world as applicable to the engineering context.

Notional Hours: The estimated learning time taken by the ‘average’ student to achieve the specified learning outcomes of the course-unit or programme.

One-higher: Applied to a person’s qualifications; means that the educational practitioner has a relevant academic qualification, of at least 120 credits, that is at a higher level than the qualification being taught or is professionally registered in an appropriate category

Online Accreditation Remote Accreditation conducted using video conferencing or other virtual networks.

Online Programme: Education programme offered over any virtual network, predominantly the internet

Pathway: Defined arrangement of teaching, learning and assessment within a programme that is one way of gaining the award of a qualification

Programme: A structured, integrated teaching and learning arrangement with a defined purpose and pathway that leads to a qualification
Practice area – in the educational context: synonymous with a generally recognised engineering speciality

Practice area – at the professional level: a generally recognised or distinctive area knowledge and expertise developed by an engineering practitioner through the path of education, training and experience

Provider: A higher education provider except if the context indicates otherwise.

Provisional Accreditation: Accreditation of a new programme once the programme has been implemented and the first cohort of students have completed 50% of the academic credit requirements towards the programme.

Qualification: The formal recognition of a specified learning achievement that is usually awarded upon successful completion of a programme

Range statement: A context in which assessment may take place against an outcome and is expressed in terms of situations, activities, tasks, methods and forms of evidence

Regular Accreditation: Accreditation according to the accreditation cycle

Self-study report: A provider’s account of how a programme meets each accreditation criterion and all applicable policy requirements while covering all methods of programme delivery and all possible pathways for completion of the degree

Stage 1: A point in the process of professional or occupational development in engineering at which a person fulfils the educational requirements to register as a candidate in the relevant category

Standards: Comprise statements of outcomes to be demonstrated and the levels of performance and content baseline requirements in the context of engineering educational programmes

Sub-discipline: Synonymous with engineering speciality

Sydney Accord: is an agreement for the mutual recognition of engineering programmes that provide the educational foundation for professional engineering technologists.
<table>
<thead>
<tr>
<th>Document No.:</th>
<th>Revision No.: 4</th>
<th>Effective Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-06-PN</td>
<td></td>
<td>01/09/2020</td>
</tr>
</tbody>
</table>

Subject: Qualification Standard for the Advanced Certificate in Engineering: NQF Level 6

Compiler: MB Mtshali
Approving Officer: EL Nxumalo
Next Review Date: 01/09/2024

Washington Accord: is an agreement for the mutual recognition of engineering programmes that provide the educational foundation for professional engineers.

Well-defined engineering problems: A class of problems with characteristics defined in document **E-02-PN**
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Accreditation Committee</td>
</tr>
<tr>
<td>Adv Cert</td>
<td>Advanced Certificate</td>
</tr>
<tr>
<td>Adv Dip</td>
<td>Advanced Diploma</td>
</tr>
<tr>
<td>Adv Dip Eng</td>
<td>Advanced Diploma in Engineering</td>
</tr>
<tr>
<td>BEng</td>
<td>Bachelor of Engineering</td>
</tr>
<tr>
<td>BSc(Eng)</td>
<td>Bachelor of Science in Engineering</td>
</tr>
<tr>
<td>BEng Tech</td>
<td>Bachelor of Engineering Technology</td>
</tr>
<tr>
<td>BTech</td>
<td>Bachelor of Technology</td>
</tr>
<tr>
<td>CHE</td>
<td>Council on Higher Education</td>
</tr>
<tr>
<td>DA</td>
<td>Dublin Accord</td>
</tr>
<tr>
<td>Dip</td>
<td>Diploma</td>
</tr>
<tr>
<td>Dip Eng</td>
<td>Diploma in Engineering</td>
</tr>
<tr>
<td>Dip Eng Tech</td>
<td>Diploma in Engineering Technology</td>
</tr>
<tr>
<td>EC</td>
<td>Education Committee</td>
</tr>
<tr>
<td>ECSA</td>
<td>Engineering Council of South Africa</td>
</tr>
<tr>
<td>GA</td>
<td>Graduate Attribute</td>
</tr>
<tr>
<td>HCert</td>
<td>Higher Certificate</td>
</tr>
<tr>
<td>HEQC</td>
<td>Higher Education Quality Committee</td>
</tr>
<tr>
<td>HEQSF</td>
<td>Higher Education Qualifications Sub-Framework</td>
</tr>
<tr>
<td>IEA</td>
<td>International Engineering Alliance</td>
</tr>
<tr>
<td>LMS</td>
<td>Learning Management System</td>
</tr>
<tr>
<td>MEng</td>
<td>Master of Engineering</td>
</tr>
<tr>
<td>ND</td>
<td>National Diploma</td>
</tr>
<tr>
<td>NQF</td>
<td>National Qualifications Framework</td>
</tr>
<tr>
<td>PGDip Eng Tech</td>
<td>Post Graduate Diploma in Engineering Technology</td>
</tr>
<tr>
<td>RSPC</td>
<td>Research, Policy and Standards Committee</td>
</tr>
<tr>
<td>SA</td>
<td>Sydney Accord</td>
</tr>
<tr>
<td>SADC</td>
<td>Southern African Development Community</td>
</tr>
<tr>
<td>SAFEO</td>
<td>Southern African Federation of Engineering Organisations</td>
</tr>
<tr>
<td>SAQA</td>
<td>South African Qualifications Authority</td>
</tr>
<tr>
<td>WA</td>
<td>Washington Accord</td>
</tr>
</tbody>
</table>

CONTROLLED DISCLOSURE

When downloaded for the ECSA Document Management System, this document is uncontrolled and the responsibility rests with the user to ensure that it is in line with the authorised version on the database. If the ‘original’ stamp in red does not appear on each page, this document is uncontrolled.
BACKGROUND
The documents that define the Engineering Council of South Africa (ECSA) system for accreditation of programmes meeting educational requirements for professional categories are shown in Figure 1 which also locates the current document.

Figure 1: Documents defining the ECSA Accreditation systems

1. POLICY STATEMENT
The ECSA develops and operates a quality assurance system that leads to the accreditation of a number of engineering education programmes

2. PURPOSE OF THIS DOCUMENT
This document defines the standard for accredited Advanced Certificate in Engineering-type programmes in terms of programme design criteria, a knowledge profile and a set of
graduate attributes. This standard is referred to in the Accreditation Criteria defined in ECSA document E-03-CRI-P.

3. FIELD
Manufacturing, Engineering and Technology

4. SUBFIELD
Engineering and Related Design

5. NQF EXIT LEVEL
Level 6

6. CREDITS
At least 140 credits. Not less than 120 Credits must be at NQF level 6.

7. ACCEPTABLE TITLES
Advanced Certificate in Engineering

8. ABBREVIATIONS
Adv Cert Eng

9. QUALIFIERS
The qualification must have a disciplinary or cross-disciplinary qualifier (discipline, branch, option or endorsement) defined in the provider’s rules for the diploma that is reflected on the academic transcript and diploma certificate, subject to the following:
9.1 There must be at least one qualifier which contains the words Diploma and Engineering together with a disciplinary description such as: Agricultural, Aeronautical, Chemical, Civil, Computer, Electrical, Electro-mechanical, Electronic, Environmental, Industrial, Extractive Metallurgical, Information, Materials, Mechanical, Mechatronic, Metallurgical, Mineral(s) Process, Physical Metallurgical and Mining. Qualifiers are not restricted to this list
9.2 The qualifier(s) must clearly indicate the nature and purpose of the programme.
9.3 The qualifier must be consistent with the fundamental engineering science content on the programme.

9.4 The target market indicated by the qualifier may be a traditional branch of engineering or a substantial industry area. Programmes should not address narrow niche markets.

In the case of a provider offering programmes with the same first-level qualifier and different second level qualifiers but with insufficiently differentiated purpose or content, only one programme should be accredited.

Examples of acceptable designations in accordance with HEQF and HEQSF policy are:
Advanced Certificate in Engineering in Civil Engineering, abbreviated Adv Cert Eng (Civil Engineering)
Advanced Certificate in Engineering in Civil Engineering in Environmental Engineering abbreviated Adv Cert Eng (Civil Engineering) (Environmental Engineering)

10. PURPOSE OF THE QUALIFICATION

The purpose of the qualification is to build the necessary knowledge, understanding, abilities and skills required for further learning towards becoming a competent practicing technician. The recognised purpose of this diploma in engineering, accredited as satisfying this standard is to provide graduates with:

10.1 Preparation for careers in engineering and related areas, for achieving technical leadership and to make a contribution to the economy and national development;
10.2 The educational requirement towards registration as a Professional Engineering Technician with the Engineering Council of South Africa as well as to allow the graduate to pursue careers in engineering and related fields;
10.3 A thorough grounding in mathematics, natural sciences, engineering sciences, engineering modelling, engineering design and the ability to enable applications in fields of emerging knowledge together with an appreciation for the world and society in which engineering is practiced;
10.4 For graduates with an appropriate level of achievement in the programme, the minimum entry requirement for admission to an Advanced Diploma, as specified in E-23-P, designed to support articulation to satisfy an engineering technologist education...
11. PROGRAMME STRUCTURE
Subject to the overall requirement for a minimum of 140 credits determined using the method defined in document R-01-POL-PC with not less than 120 credits at NQF level 6, credits must be distributed in order to create a coherent progression of learning towards the exit-level. Preparatory or remedial courses are not included in the 140 credits.

11.1 Knowledge Areas in the Programme
The content of the programme when analysed by knowledge area must not fall below the minimum SAQA credits in each knowledge area in table 1.

The method for calculating credits and allocating to knowledge areas is defined in document E-01-POL.

Table 1: Minimum curriculum content by knowledge area

<table>
<thead>
<tr>
<th>Knowledge area</th>
<th>Minimum Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Sciences</td>
<td>14</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>14</td>
</tr>
<tr>
<td>Engineering Sciences</td>
<td>67</td>
</tr>
<tr>
<td>Design and Synthesis</td>
<td>17</td>
</tr>
<tr>
<td>Complementary studies</td>
<td>7</td>
</tr>
<tr>
<td>Work-integrated learning</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>119</td>
</tr>
<tr>
<td>For Reallocation</td>
<td>≥21</td>
</tr>
<tr>
<td>Total Credits</td>
<td>≥140</td>
</tr>
</tbody>
</table>
The *for reallocation* component must be taken up by allocating knowledge to the five knowledge areas to form a coherent, balanced programme.

If the provider includes work-based learning in the programme, credits may be assigned and included in the knowledge breakdown only if the work is quality-assured by the provider, the students’ performance is comprehensively assessed against defined outcomes, and if this information is documented and presented in the accreditation process.

11.2 Core and Specialist Requirements

The programme must have a coherent core of mathematics, natural sciences and engineering fundamentals that provides a viable platform for further studies and lifelong learning. The coherent core must enable development in a traditional discipline or in an emerging field.

A programme must contain specialist engineering study at the exit-level. Specialist study may take on many forms including further deepening of a theme in the core, a new sub-discipline, or a specialist topic building on the core. It is recognized that the extent of specialist study is, of necessity, limited in view of the need to provide a substantial coherent core. Specialist study may take the form of compulsory or elective credits.

11.3 Curriculum Content

This standard does not specify detailed curriculum content. The engineering fundamentals and specialist engineering science content must be consistent with the designation of the degree.

12. ACCESS TO QUALIFICATION

This standard is specified as a set of graduate attributes and overall distribution of credits. Providers therefore have freedom to construct programmes geared to different levels of preparedness of learners, including:

- Use of access programmes for learners who do not meet the minimum learning requirements;
- Creating articulation paths from other qualifications.
13. MINIMUM LEARNING ASSUMED TO BE IN PLACE

Designers of a 140-credit programme to meet the graduate attributes and credit requirements defined in this standard assume that entrants are proficient as specified by the provider’s entry requirements in Mathematics, Physical Science and reading, speaking and writing in the language of teaching and learning, and reading in English.

Note: These assumptions do not prescribe prerequisites. Sections 11 and 12 should be read together.

14. GRADUATE ATTRIBUTES

The graduate attributes defined below are stated generically and may be assessed in various engineering disciplinary or cross-disciplinary contexts in a provider-based or simulated practice environment.

General Range Statement: The competencies defined in the eleven graduate attributes may be demonstrated in a university-based, simulated workplace context. Competencies stated generically may be assessed in various engineering disciplinary or cross-disciplinary contexts.

Level Descriptor: Well-defined engineering problems:

a) can be solved mainly by practical engineering knowledge, underpinned by related theory; and have one or more of the characteristics:
 i) are largely defined but may require clarification;
 ii) are discrete, focused tasks within engineering systems;
 iii) are routine, frequently encountered, may be unfamiliar but in a familiar context;

b) and their solutions have one or more of the characteristics:
 i) can be solved in standard prescribed ways;
 ii) are encompassed by standards, codes and documented procedures; requires authorization to work outside limits;
 iii) information is concrete and largely complete, but requires checking and possible supplementation;
iv) involve several issues but few of these impose conflicting constraints and have a limited range of interested and affected parties.

Graduate Attribute 1: Problem solving

Identify, formulate, analyse and solve well-defined engineering problems

Graduate Attribute 2: Application of scientific and engineering knowledge

Apply knowledge of mathematics, natural sciences, engineering fundamentals and an engineering speciality to solve well-defined engineering problems.

Level descriptor: Knowledge of mathematics, natural sciences and engineering sciences is characterized by:

- A thorough grounding in the natural sciences applicable to the sub-discipline;
- A thorough grounding in mathematics, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modelling applicable to the sub-discipline;
- A thorough grounding in the engineering fundamentals required in the engineering sub-discipline; and
- Engineering specialist knowledge in the accepted practice areas in the engineering sub-discipline;

Range Statement: Mathematics, natural science and engineering sciences are applied in analysis and modelling of engineering situations, and for reasoning about and solving well-defined engineering problems.

Graduate Attribute 3: Engineering design

Perform procedural design and synthesis of components, systems, engineering works, products or processes.

Range Statement: Design problems used in exit-level assessment must conform to the definition of a well-defined engineering problem. A design problem should be used to provide
evidence. The design knowledge base and components, systems, engineering works, products or processes to be designed are dependent on the sub-discipline or practice area.

Graduate Attribute 4: Investigations, experiments and data analysis
Demonstrate competence to design and conduct investigations and experiments.

Range Statement: The balance of investigation and experiment should be appropriate to the sub-discipline. Research methodology is to be applied in research or an investigation where the student engages with selected knowledge in the research literature of the sub-discipline.

Note: An investigation differs from a design in that the objective is to produce knowledge and understanding of a phenomenon and a recommended course of action rather than specifying how an artifact could be produced.

Graduate Attribute 5: Engineering methods, skills and tools, including information technology
Demonstrate competence to use appropriate engineering methods, skills and tools, including those based on information technology.

Range Statement: A range of methods, skills and tools appropriate to the disciplinary designation of the program including:
- Sub-discipline-specific tools, processes or procedures;
- Computer packages for computation, modelling, simulation, and information handling;
- Computers and networks and information infrastructures for accessing, processing, managing, and storing information to enhance personal productivity and teamwork.

Graduate Attribute 6: Professional and technical communication
Demonstrate competence to communicate effectively, both orally and in writing, with engineering audiences and the community at large.
Range Statement: Material to be communicated is in an academic or simulated professional context. Audiences range from engineering peers, academic personnel and related engineering peers, using appropriate academic or professional discourse. Written reports range from short (300 words) to long (a minimum of 2000 words excluding tables, diagrams and appendices), covering material at exit-level. Methods of providing information include the conventional methods of the sub-discipline, for example engineering drawings, as well as subject-specific methods.

Graduate Attribute 7: Sustainability and impact of engineering activity
Demonstrate critical awareness of the sustainability and impact of engineering activity on the social, industrial and physical environment.

Range Statement: The combination of social, workplace (industrial) and physical environmental factors must be appropriate to the sub-discipline or other designation of the qualification. Comprehension of the role of engineering in society and identified issues in engineering practice in the sub-discipline: health, safety and environmental protection; risk assessment and management and the impacts of engineering activity: economic, social, cultural, environmental and sustainability.

Graduate Attribute 8: Individual, team and multidisciplinary working
Demonstrate competence to work effectively as an individual, in teams and in multidisciplinary environments.

Range Statement: Multidisciplinary tasks require co-operation across at least one disciplinary boundary. Co-operating disciplines may be engineering disciplines with different fundamental bases other than that of the programme or may be outside engineering.

Graduate Attribute 9: Independent learning ability
Demonstrate competence to engage in independent learning through well-developed learning skills.
Range Statement: Operate in well-structured environment with some unfamiliar elements requiring personal responsibility and initiative, accurately self-evaluate and take responsibility for learning requirements; be aware of social and ethical implications of applying knowledge in particular contexts.

Graduate Attribute 10: Engineering professionalism
Demonstrate critical awareness of the need to act professionally and ethically and to exercise judgment and take responsibility within own limits of competence.

Range Statement: Evidence includes case studies typical of engineering practice situations in which the graduate is likely to participate. Ethics and the professional responsibility of a technician and the contextual knowledge specified in the range statement of Graduate Attribute 7 is generally applicable here.

Graduate Attribute 11: Engineering management
Demonstrate knowledge and understanding of engineering management principles and economic decision-making.

Range Statement: Basic techniques from economics, business management; project management applied to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

Graduate Attribute 12: Workplace practices
Demonstrate an understanding of workplace practices to solve engineering problems consistent with academic learning achieved.

Range Statement: Tasks to demonstrate this outcome should be designed to connect academic learning with workplace practice and may be performed in one or more of the following types of work-integrated learning

i) Work-directed theoretical learning.

ii) Problem-based learning.

iii) Project-based learning.
iv) Work-based learning, and
v) Simulated learning.

Note: While attribute 12 is specific to workplace practices, other attributes may be demonstrated simultaneously

15. INTERNATIONAL COMPARABILITY
International comparability of this whole qualification standard is ensured through the Dublin Accord, an agreement for the mutual recognition of professionally-oriented diplomas in engineering. The standards are comparable with the Dublin Accord Graduate Attributes. Dublin Accord signatories are subject to change as new members meeting the requirements are registered. Comparability is audited on a six-yearly cycle by a visiting Dublin Accord team.

16. INTEGRATED ASSESSMENT
Providers of programmes must demonstrate in the quality assurance process that an effective integrated assessment strategy is used. Clearly identified components of assessment must address summative assessment of the graduate attributes. Evidence should be derived from major work or multiple instances of limited scale work.

17. RECOGNITION OF PRIOR LEARNING
Providers may make use of recognition of prior learning at intermediate levels but must take full responsibility for assessing the graduate attributes.

18. ARTICULATION POSSIBILITIES
The graduate attributes ensure that a graduate of a programme meeting these standards would meet requirements for entry to a number of programmes including:

18.1 A candidacy programme toward registration as a Professional Engineering Technician;

18.2 Admission to an Advanced Diploma, as specified in E-23-P, designed to support articulation to satisfy an engineering technologist education benchmark.
18.3 In certain disciplines, progression toward the Government Certificate of Competency.

19. MODERATION AND REGISTRATION OF ASSESSORS

Providers of programmes must demonstrate in the quality assurance process that an effective moderation process exists to ensure that the assessment system is consistent and fair.

Registration of assessors is delegated by the Higher Education Quality Committee to the Higher Education providers responsible for the programmes.

References

Policy on Accreditation of Engineering Programmes E-01-POL Available via www.ecsa.co.za
The Qualification Standard for:

Advanced Certificate in Engineering: NQF Level 6

Revision 4 dated 01 September 2020 and consisting of 23 pages has been reviewed for adequacy by the Business Unit Manager and is approved by the Executive: Research Policy and Standards (RPS).

CONTROLLED DISCLOSURE

When downloaded for the ECSA Document Management System, this document is uncontrolled and the responsibility rests with the user to ensure that it is in line with the authorised version on the database. If the 'original' stamp in red does not appear on each page, this document is uncontrolled.

QM-TEM-001 Rev 0 – ECSA Policy/Procedure
APPENDIX A: Consistency of Graduate Attributes with Critical Crossfield Outcomes

<table>
<thead>
<tr>
<th>SAQA Critical Cross-Field Outcomes</th>
<th>Equivalent Graduate Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifying and solving problems in which responses display that responsible decisions using critical thinking have been made.</td>
<td>GA 1, 2, 3, 5</td>
</tr>
<tr>
<td>Working effectively with others as a member of a team, group, organisation and community.</td>
<td>GA 8</td>
</tr>
<tr>
<td>Organising and managing oneself and one’s activities responsibly and effectively.</td>
<td>GA 8, GA11</td>
</tr>
<tr>
<td>Collecting, analysing, organising and critically evaluating information.</td>
<td>GA 1, 3, 5</td>
</tr>
<tr>
<td>Communicating effectively using visual, mathematical and/or language skills.</td>
<td>GA 2, 6</td>
</tr>
<tr>
<td>Using science and technology effectively and critically, showing responsibility toward the environment and health of others.</td>
<td>GA 2, 3, 4, 5, 7</td>
</tr>
<tr>
<td>Demonstrating an understanding of the world as a set of Related systems by recognizing that problem contexts do not exist in isolation.</td>
<td>GA 1, 3,</td>
</tr>
<tr>
<td>Contributing to the full personal development of each learner and the social and economic development of society at large, by making it an underlying intention of the programme of learning to make an individual aware of:</td>
<td></td>
</tr>
<tr>
<td>• reflecting on and exploring a variety of strategies to more effectively learn</td>
<td>GA 9</td>
</tr>
<tr>
<td>• participating as responsible citizens in the life of national and global communities local</td>
<td>GA 10</td>
</tr>
<tr>
<td>• being culturally and aesthetically sensitive across a range of contexts</td>
<td>GA 7</td>
</tr>
<tr>
<td>• exploring education and career opportunities</td>
<td>GA 8</td>
</tr>
<tr>
<td>Developing entrepreneurial opportunities</td>
<td>GA 3</td>
</tr>
</tbody>
</table>